1
|
Auwercx J, Neve B, Vanlaeys A, Fourgeaud M, Bourrin-Reynard I, Souidi M, Brassart-Pasco S, Hague F, Guenin S, Duchene B, Gutierrez L, Destaing O, Dhennin-Duthille I, Van Seuningen I, Jonckheere N, Gautier M. The kinase domain of TRPM7 interacts with PAK1 and regulates pancreatic cancer cell epithelial-to-mesenchymal transition. Cell Death Dis 2025; 16:335. [PMID: 40274768 PMCID: PMC12022261 DOI: 10.1038/s41419-025-07665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the main and the deadliest form of pancreatic cancer. This is a major problem of public health since it will become the second leading cause of death by cancer in the next few years, mainly due to the lack of efficient therapies. Transient Receptor Potential Cation Channel Subfamily M Member 7 (TRPM7) protein, a cation channel fused with a serine/threonine kinase domain is overexpressed in PDAC and associated with a low survival. In this work, we aim to study the role of kinase domain on pancreatic cell fates by using a model of kinase domain deletion by CRISPR-Cas9. PANC-1 and MIA PaCa-2 PDAC cell lines were used and kinase domain was deleted by CRISPR-Cas9 strategy. Kinase domain deletion (ΔK) was validated by RT-qPCR and western blots. The effect of kinase domain deletion on channel function was studied by patch-clamp and Mn2+-quenching. The cell phenotype was studied by MTT and cell migration/invasion assays. Finally, the role of kinase domain was studied in vivo in xenografted mice. Here we show that TRPM7 kinase domain is required to maintain a mesenchymal phenotype in PDAC cells. We also demonstrated that TRPM7 and PAK1 interact in the same protein complexes. Moreover, TRPM7 kinase domain is required for carcinogenesis and cancer cell dissemination in vivo. Intriguingly, the role of TRPM7 kinase is cell specific and may depend on the KRAS oncogene mutation status. In conclusion, TRPM7 kinase domain is required to maintain a mesenchymal and aggressive phenotype in PDAC cells, and it could be a promising target against PDAC.
Collapse
Affiliation(s)
- Julie Auwercx
- Université de Picardie Jules Verne, UR-UPJV 4667, Amiens, France
| | - Bernadette Neve
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Alison Vanlaeys
- Université de Picardie Jules Verne, UR-UPJV 4667, Amiens, France
| | | | - Ingrid Bourrin-Reynard
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, site santé, Allée des Alpes, Grenoble, France
| | - Mouloud Souidi
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | | | - Frédéric Hague
- Université de Picardie Jules Verne, UR-UPJV 4667, Amiens, France
| | - Stéphanie Guenin
- Université de Picardie Jules Verne, Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Amiens, France
| | - Belinda Duchene
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Laurent Gutierrez
- Université de Picardie Jules Verne, Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Amiens, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, site santé, Allée des Alpes, Grenoble, France
| | | | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Mathieu Gautier
- Université de Picardie Jules Verne, UR-UPJV 4667, Amiens, France.
| |
Collapse
|
2
|
Egawa M, Schmücker E, Grimm C, Gudermann T, Chubanov V. Expression Profiling Identified TRPM7 and HER2 as Potential Targets for the Combined Treatment of Cancer Cells. Cells 2024; 13:1801. [PMID: 39513908 PMCID: PMC11545334 DOI: 10.3390/cells13211801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
TRPM7 is a divalent cation-permeable channel that is highly active in cancer cells. The pharmacological inhibitors of TRPM7 have been shown to suppress the proliferation of tumor cells, highlighting TRPM7 as a new anticancer drug target. However, the potential benefit of combining TRPM7 inhibitors with conventional anticancer therapies remains unexplored. Here, we used genome-wide transcriptome profiling of human leukemia HAP1 cells to examine cellular responses caused by the application of NS8593, the potent inhibitor of the TRPM7 channel, in comparison with two independent knockout mutations in the TRPM7 gene introduced by the CRISPR/Cas9 approach. This analysis revealed that TRPM7 regulates the expression levels of several transcripts, including HER2 (ERBB2). Consequently, we examined the TRPM7/HER2 axis in several non-hematopoietic cells to show that TRPM7 affects the expression of HER2 protein in a Zn2+-dependent fashion. Moreover, we found that co-administration of pharmacological inhibitors of HER2 and TRPM7 elicited a synergistic antiproliferative effect on HER2-overexpressing SKBR3 cells but not on HER2-deficient MDA-MB-231 breast cancer cells. Hence, our study proposes a new combinatorial strategy for treating HER2-positive breast cancer cells.
Collapse
Affiliation(s)
- Miyuki Egawa
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
| | - Eva Schmücker
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 80799 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; (M.E.); (E.S.); (C.G.)
| |
Collapse
|
3
|
Yan Q, Gao C, Li M, Lan R, Wei S, Fan R, Cheng W. TRP Ion Channels in Immune Cells and Their Implications for Inflammation. Int J Mol Sci 2024; 25:2719. [PMID: 38473965 DOI: 10.3390/ijms25052719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The transient receptor potential (TRP) ion channels act as cellular sensors and mediate a plethora of physiological processes, including somatosensation, proliferation, apoptosis, and metabolism. Under specific conditions, certain TRP channels are involved in inflammation and immune responses. Thus, focusing on the role of TRPs in immune system cells may contribute to resolving inflammation. In this review, we discuss the distribution of five subfamilies of mammalian TRP ion channels in immune system cells and how these ion channels function in inflammatory mechanisms. This review provides an overview of the current understanding of TRP ion channels in mediating inflammation and may offer potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Qiyue Yan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Mei Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Rui Lan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Shaohan Wei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Runsong Fan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|