1
|
Felix MA, Han J, Khajanchi BK, Sanad YM, Zhao S, Foley SL. Salmonella enterica serovar Schwarzengrund: Distribution, Virulence, and Antimicrobial Resistance. Microorganisms 2025; 13:92. [PMID: 39858860 PMCID: PMC11767468 DOI: 10.3390/microorganisms13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence of Salmonella enterica serovar Schwarzengrund has risen in recent years. This serotype has been isolated from poultry, retail meat, and other food products, leading to multiple outbreaks. Alongside the increase in infections, there are growing concerns about the increasing levels of antimicrobial resistance (AMR) among S. Schwarzengrund strains. This study aims to better understand the genetic factors possibly contributing to the rising prevalence of S. Schwarzengrund by analyzing the sequences of 2058 isolates from both human patients (N = 313) and food- and animal-associated sources, including chicken (N = 1145), turkey (N = 300), pork (N = 132), and other sources (N = 168). Data were obtained from GenBank and analyzed for AMR genes using AMRFinder. Additionally, putative virulence genes and plasmid transfer genes were assessed using the Virulence and AMR Plasmid Transfer Factor Database. AMR genes were found in 1269 (61.7%) of the isolates, with a total of 2478 AMR genes among the isolates, the most common being aph(3″)-Ib (N = 969, 47.1%), tet(A) (N = 190, 9.2%), and sul2 (N = 150, 7.3%), which are responsible for resistance to aminoglycoside, tetracycline, and sulfonamide, respectively. Additionally, 1060 (51.5%) isolates carried multiple plasmid transfer genes associated with IncFIB-FIC(FII) plasmids. Other plasmid types found in at least 1% of the strains included IncI1 (N = 101, 4.9%), IncHI2 (N = 62, 3.0%), or IncHI1 (N = 24, 1.2%). The virulence gene profiles of human isolates showed diversity but largely overlapped with those from different food sources. Notably, the aerobactin iron acquisition genes, associated with Salmonella's virulence and colonization, were highly prevalent among chicken isolates (N = 1019, 89.0%) but less frequent in isolates from other sources (N = 65, 7.2%). IncFIB-FIC(FII) plasmids, commonly harboring the aerobactin operon, were highly prevalent among chicken-related isolates and present in about 10% of human isolates. The diverse plasmid, AMR, and virulence gene profiles in human-associated isolates suggest that multiple factors may contribute to the increased virulence in S. Schwarzengrund.
Collapse
Affiliation(s)
- Monique A. Felix
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.A.F.); (J.H.); (B.K.K.); (Y.M.S.)
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.A.F.); (J.H.); (B.K.K.); (Y.M.S.)
| | - Bijay K. Khajanchi
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.A.F.); (J.H.); (B.K.K.); (Y.M.S.)
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Yasser M. Sanad
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.A.F.); (J.H.); (B.K.K.); (Y.M.S.)
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Shaohua Zhao
- Office of Applied Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA;
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.A.F.); (J.H.); (B.K.K.); (Y.M.S.)
| |
Collapse
|
2
|
Mohammed M, Casjens SR, Millard AD, Harrison C, Gannon L, Chattaway MA. Genomic analysis of Anderson typing phages of Salmonella Typhimrium: towards understanding the basis of bacteria-phage interaction. Sci Rep 2023; 13:10484. [PMID: 37380724 PMCID: PMC10307801 DOI: 10.1038/s41598-023-37307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The Anderson phage typing scheme has been successfully used worldwide for epidemiological surveillance of Salmonella enterica serovar Typhimurium. Although the scheme is being replaced by whole genome sequence subtyping methods, it can provide a valuable model system for study of phage-host interaction. The phage typing scheme distinguishes more than 300 definitive types of Salmonella Typhimurium based on their patterns of lysis to a unique collection of 30 specific Salmonella phages. In this study, we sequenced the genomes of 28 Anderson typing phages of Salmonella Typhimurium to begin to characterize the genetic determinants that are responsible for the differences in these phage type profiles. Genomic analysis of typing phages reveals that Anderson phages can be classified into three different groups, the P22-like, ES18-like and SETP3-like clusters. Most Anderson phages are short tailed P22-like viruses (genus Lederbergvirus); but phages STMP8 and STMP18 are very closely related to the lambdoid long tailed phage ES18, and phages STMP12 and STMP13 are related to the long noncontractile tailed, virulent phage SETP3. Most of these typing phages have complex genome relationships, but interestingly, two phage pairs STMP5 and STMP16 as well as STMP12 and STMP13 differ by a single nucleotide. The former affects a P22-like protein involved in DNA passage through the periplasm during its injection, and the latter affects a gene whose function is unknown. Using the Anderson phage typing scheme would provide insights into phage biology and the development of phage therapy for the treatment of antibiotic resistant bacterial infections.
Collapse
Affiliation(s)
- Manal Mohammed
- Genomics and Infectious Diseases Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Christian Harrison
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Lucy Gannon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | |
Collapse
|
3
|
Feiss M, Young R, Ramsey J, Adhya S, Georgopoulos C, Hendrix RW, Hatfull GF, Gilcrease EB, Casjens SR. Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. Microbiol Mol Biol Rev 2022; 86:e0012421. [PMID: 36165780 PMCID: PMC9799177 DOI: 10.1128/mmbr.00124-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ryland Young
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, The National Cancer Institute, Bethesda, Maryland, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eddie B. Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Zaworski J, Dagva O, Brandt J, Baum C, Ettwiller L, Fomenkov A, Raleigh EA. Reassembling a cannon in the DNA defense arsenal: Genetics of StySA, a BREX phage exclusion system in Salmonella lab strains. PLoS Genet 2022; 18:e1009943. [PMID: 35377874 PMCID: PMC9009780 DOI: 10.1371/journal.pgen.1009943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/14/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX (BacteRiophage EXclusion) systems. These RM-like activities employ host protection by DNA modification, but immediate replication arrest occurs without evident of nuclease action on unmodified phage DNA. Here we show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a variant BREX system. A laboratory strain disabled for both the restriction and methylation activity of StySA nevertheless has wild type sequence in pglX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (μ) in their C-terminal domains. We further investigate this system in situ, replacing the mutated pglZμ and brxCμ genes with the WT counterpart. PglZ-WT supports methylation in the presence of either BrxCμ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. These results suggests that while BrxC, PglZ and PglX are principal components of the BREX modification activity, BrxL is required for restriction only. Furthermore, we show that a partial disruption of brxL disrupts transcription globally. Horizontal gene transfer is a major driver of evolution and adaptation in bacteria. Genes from outside may be beneficial or dangerous to the receiving cell. Benefits include new food sources such as sugars, or new homes by adhesion, or new resistances, as to antibiotics. Dangers are posed by bacteriophages--viruses that take over the cell machinery, multiply, and release progeny to kill sister cells. Host-dependent restriction-modification systems enable defense that distinguishes relatives from strangers: using a modification pattern (M) carried by DNA bases added by the host cell to prevent restriction (R). Sisters and cousin cells will have the same protective pattern on DNA, while DNA of foreign origin will have the wrong M pattern and be restricted (R, rejected). Typically, restriction involves nuclease digestion. Here we address the enigmatic StySA RM system, one of the earliest to be genetically characterized. It is a variant of the newly recognized defense mechanism, BREX. BREX systems also track DNA history via modification pattern, but restrict by a novel, uncharacterized mechanism. Like other BREX family systems, StySA-BREX modification requires multiple components. When StySA-BREX transcription is unbalanced, we find global disruption of gene transcription. The disruption pattern does not suggest SOS-inducing damage to DNA.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julius Brandt
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Chloé Baum
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Laurence Ettwiller
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Elisabeth A. Raleigh
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Zaworski J, Dagva O, Kingston AW, Fomenkov A, Morgan RD, Bossi L, Raleigh EA. Genome archaeology of two laboratory Salmonella enterica enterica sv Typhimurium. G3 (BETHESDA, MD.) 2021; 11:jkab226. [PMID: 34544129 PMCID: PMC8496262 DOI: 10.1093/g3journal/jkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
The Salmonella research community has used strains and bacteriophages over decades, exchanging useful new isolates among laboratories for the study of cell surface antigens, metabolic pathways and restriction-modification (RM) studies. Here we present the sequences of two laboratory Salmonella strains (STK005, an isolate of LB5000; and its descendant ER3625). In the ancestry of LB5000, segments of ∼15 and ∼42 kb were introduced from Salmonella enterica sv Abony 803 into S. enterica sv Typhimurium LT2, forming strain SD14; this strain is thus a hybrid of S. enterica isolates. Strains in the SD14 lineage were used to define flagellar antigens from the 1950s to the 1970s, and to define three RM systems from the 1960s to the 1980s. LB5000 was also used as a host in phage typing systems used by epidemiologists. In the age of cheaper and easier sequencing, this resource will provide access to the sequence that underlies the extensive literature.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | | | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Lionello Bossi
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay, Gif-sur-Yvette 91198, France
| | | |
Collapse
|