1
|
Ashwath MN, Lavale SA, Santhoshkumar AV, Mohapatra SR, Bhardwaj A, Dash U, Shiran K, Samantara K, Wani SH. Genome-wide association studies: an intuitive solution for SNP identification and gene mapping in trees. Funct Integr Genomics 2023; 23:297. [PMID: 37700096 DOI: 10.1007/s10142-023-01224-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Analysis of natural diversity in wild/cultivated plants can be used to understand the genetic basis for plant breeding programs. Recent advancements in DNA sequencing have expanded the possibilities for genetically altering essential features. There have been several recently disclosed statistical genetic methods for discovering the genes impacting target qualities. One of these useful methods is the genome-wide association study (GWAS), which effectively identifies candidate genes for a variety of plant properties by examining the relationship between a molecular marker (such as SNP) and a target trait. Conventional QTL mapping with highly structured populations has major limitations. The limited number of recombination events results in poor resolution for quantitative traits. Only two alleles at any given locus can be studied simultaneously. Conventional mapping approach fails to work in perennial plants and vegetatively propagated crops. These limitations are sidestepped by association mapping or GWAS. The flexibility of GWAS comes from the fact that the individuals being examined need not be linked to one another, allowing for the use of all meiotic and recombination events to increase resolution. Phenotyping, genotyping, population structure analysis, kinship analysis, and marker-trait association analysis are the fundamental phases of GWAS. With the rapid development of sequencing technologies and computational methods, GWAS is becoming a potent tool for identifying the natural variations that underlie complex characteristics in crops. The use of high-throughput sequencing technologies along with genotyping approaches like genotyping-by-sequencing (GBS) and restriction site associated DNA (RAD) sequencing may be highly useful in fast-forward mapping approach like GWAS. Breeders may use GWAS to quickly unravel the genomes through QTL and association mapping by taking advantage of natural variances. The drawbacks of conventional linkage mapping can be successfully overcome with the use of high-resolution mapping and the inclusion of multiple alleles in GWAS.
Collapse
Affiliation(s)
- M N Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Shivaji Ajinath Lavale
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - A V Santhoshkumar
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751 003, India.
| | - Ankita Bhardwaj
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Umakanta Dash
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - K Shiran
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Shabir Hussain Wani
- Mountain Research Center for Field crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Xia H, Hao Z, Shen Y, Tu Z, Yang L, Zong Y, Li H. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1544-1563. [PMID: 37272730 DOI: 10.1111/tpj.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The genetic factors underlying growth traits differ over time points or stages. However, most current studies of phenotypes at single time points do not capture all loci or explain the genetic differences underlying growth trajectories. Hybrid Liriodendron exhibits obvious heterosis and is widely cultivated, although its complex genetic mechanism underlying growth traits remains unknown. A genome-wide association study (GWAS) is an effective method for elucidating the genetic architecture by identifying genetic loci underlying complex quantitative traits. In the present study, using a GWAS, we identified robust loci associated with growth trajectories in hybrid Liriodendron populations. We selected 233 hybrid progenies derived from 25 crosses for resequencing, and measured their tree height (H) and diameter at breast height (DBH) for 11 consecutive years; 192 972 high-quality single nucleotide polymorphisms (SNPs) were obtained. The dynamics of the multiyear single-trait GWAS showed that year-specific SNPs predominated, and only five robust SNPs for DBH were identified in at least three different years. Multitrait GWAS analysis with model parameters as latent variables also revealed 62 SNPs for H and 52 for DBH associated with the growth trajectory, displaying different biomass accumulation patterns, among which four SNPs exerted pleiotropic effects. All identified SNPs also exhibited temporal variations in effect sizes and inheritance patterns potentially related to different growth and developmental stages. The haplotypes resulting from these significant SNPs might pyramid favorable loci, benefitting the selection of superior genotypes. The present study provides insights into the genetic architecture of dynamic growth traits and lays a basis for future molecular-assisted breeding.
Collapse
Affiliation(s)
- Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufang Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Wang Y, Zhang H, Zhu S, Shen T, Pan H, Xu M. Association Mapping and Expression Analysis of the Genes Involved in the Wood Formation of Poplar. Int J Mol Sci 2023; 24:12662. [PMID: 37628843 PMCID: PMC10454019 DOI: 10.3390/ijms241612662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Xylogenesis is a complex and sequential biosynthetic process controlled by polygenes. Deciphering the genetic architecture of this complex quantitative trait could provide valuable information for increasing wood biomass and improving its properties. Here, we performed genomic resequencing of 64 24-year-old trees (64 hybrids of section Aigeiros and their parents) grown in the same field and conducted full-sib family-based association analyses of two growth and six woody traits using GEMMA as a choice of association model selection. We identified 1342 significantly associated single nucleotide polymorphisms (SNPs), 673 located in the region upstream and downstream of 565 protein-encoding genes. The transcriptional regulation network of secondary cell wall (SCW) biosynthesis was further constructed based on the published data of poplar miRNA, transcriptome, and degradome. These provided a certain scientific basis for the in-depth understanding of the mechanism of poplar timber formation and the molecular-assisted breeding in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Satae Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (H.Z.); (S.Z.); (T.S.); (H.P.)
| |
Collapse
|
4
|
Malik P, Kumar J, Sharma S, Meher PK, Balyan HS, Gupta PK, Sharma S. GWAS for main effects and epistatic interactions for grain morphology traits in wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:651-668. [PMID: 35465203 PMCID: PMC8986918 DOI: 10.1007/s12298-022-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/05/2023]
Abstract
In the present study in wheat, GWAS was conducted for identification of marker trait associations (MTAs) for the following six grain morphology traits: (1) grain cross-sectional area (GCSA), (2) grain perimeter (GP), (3) grain length (GL), (4) grain width (GWid), (5) grain length-width ratio (GLWR) and (6) grain form-density (GFD). The data were recorded on a subset of spring wheat reference set (SWRS) comprising 225 diverse genotypes, which were genotyped using 10,904 SNPs and phenotyped for two consecutive years (2017-2018, 2018-2019). GWAS was conducted using five different models including two single-locus models (CMLM, SUPER), one multi-locus model (FarmCPU), one multi-trait model (mvLMM) and a model for Q x Q epistatic interactions. False discovery rate (FDR) [P value -log10(p) ≥ 5] and Bonferroni correction [P value -log10(p) ≥ 6] (corrected p value < 0.05) were applied to eliminate false positives due to multiple testing. This exercise gave 88 main effect and 29 epistatic MTAs after FDR and 13 main effect and 6 epistatic MTAs after Bonferroni corrections. MTAs obtained after Bonferroni corrections were further utilized for identification of 55 candidate genes (CGs). In silico expression analysis of CGs in different tissues at different parts of the seed at different developmental stages was also carried out. MTAs and CGs identified during the present study are useful addition to available resources for MAS to supplement wheat breeding programmes after due validation and also for future strategic basic research. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01164-w.
Collapse
Affiliation(s)
- Parveen Malik
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Jitendra Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
- Department of Biotechnology, National Agri-Food Biotechnology Institute (NABI), Govt. of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306 India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Prabina Kumar Meher
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| |
Collapse
|
5
|
Yang W, Yao D, Wu H, Zhao W, Chen Y, Tong C. Multivariate genome-wide association study of leaf shape in a Populus deltoides and P. simonii F1 pedigree. PLoS One 2021; 16:e0259278. [PMID: 34710178 PMCID: PMC8553126 DOI: 10.1371/journal.pone.0259278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Leaf morphology exhibits tremendous diversity between and within species, and is likely related to adaptation to environmental factors. Most poplar species are of great economic and ecological values and their leaf morphology can be a good predictor for wood productivity and environment adaptation. It is important to understand the genetic mechanism behind variation in leaf shape. Although some initial efforts have been made to identify quantitative trait loci (QTLs) for poplar leaf traits, more effort needs to be expended to unravel the polygenic architecture of the complex traits of leaf shape. Here, we performed a genome-wide association analysis (GWAS) of poplar leaf shape traits in a randomized complete block design with clones from F1 hybrids of Populus deltoides and Populus simonii. A total of 35 SNPs were identified as significantly associated with the multiple traits of a moderate number of regular polar radii between the leaf centroid and its edge points, which could represent the leaf shape, based on a multivariate linear mixed model. In contrast, the univariate linear mixed model was applied as single leaf traits for GWAS, leading to genomic inflation; thus, no significant SNPs were detected for leaf length, measures of leaf width, leaf area, or the ratio of leaf length to leaf width under genomic control. Investigation of the candidate genes showed that most flanking regions of the significant leaf shape-associated SNPs harbored genes that were related to leaf growth and development and to the regulation of leaf morphology. The combined use of the traditional experimental design and the multivariate linear mixed model could greatly improve the power in GWAS because the multiple trait data from a large number of individuals with replicates of clones were incorporated into the statistical model. The results of this study will enhance the understanding of the genetic mechanism of leaf shape variation in Populus. In addition, a moderate number of regular leaf polar radii can largely represent the leaf shape and can be used for GWAS of such a complicated trait in Populus, instead of the higher-dimensional regular radius data that were previously considered to well represent leaf shape.
Collapse
Affiliation(s)
- Wenguo Yang
- Co-Innovation Center for Sustainable Forestry in South China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Dan Yao
- Co-Innovation Center for Sustainable Forestry in South China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Hainan Wu
- Co-Innovation Center for Sustainable Forestry in South China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Wei Zhao
- Co-Innovation Center for Sustainable Forestry in South China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Yuhua Chen
- Co-Innovation Center for Sustainable Forestry in South China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
| | - Chunfa Tong
- Co-Innovation Center for Sustainable Forestry in South China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
6
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
7
|
Morales L, Michel S, Ametz C, Dallinger HG, Löschenberger F, Neumayer A, Zimmerl S, Buerstmayr H. Genomic signatures of selection for resistance to stripe rust in Austrian winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3111-3121. [PMID: 34125246 PMCID: PMC8354948 DOI: 10.1007/s00122-021-03882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
We combined quantitative and population genetic methods to identify loci under selection for adult plant resistance to stripe rust in an Austrian winter wheat breeding population from 2008 to 2018. Resistance to stripe rust, a foliar disease caused by the fungus P. striiformis f. sp. tritici, in wheat (Triticum aestivum L.) is both qualitatively and quantitatively controlled. Resistance genes confer complete, race-specific resistance but are easily overcome by evolving pathogen populations, while quantitative resistance is controlled by many small- to medium-effect loci that provide incomplete yet more durable protection. Data on resistance loci can be applied in marker-assisted selection and genomic prediction frameworks. We employed genome-wide association to detect loci associated with stripe rust and selection testing to identify regions of the genome that underwent selection for stripe rust resistance in an Austrian winter wheat breeding program from 2008 to 2018. Genome-wide association mapping identified 150 resistance loci, 62 of which showed significant evidence of selection over time. The breeding population also demonstrated selection for resistance at the genome-wide level.
Collapse
Affiliation(s)
- Laura Morales
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria.
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | - Hermann Gregor Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | | | - Simone Zimmerl
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| |
Collapse
|
8
|
Malik P, Kumar J, Singh S, Sharma S, Meher PK, Sharma MK, Roy JK, Sharma PK, Balyan HS, Gupta PK, Sharma S. Single-trait, multi-locus and multi-trait GWAS using four different models for yield traits in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:46. [PMID: 37309385 PMCID: PMC10236106 DOI: 10.1007/s11032-021-01240-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
A genome-wide association study (GWAS) for 10 yield and yield component traits was conducted using an association panel comprising 225 diverse spring wheat genotypes. The panel was genotyped using 10,904 SNPs and evaluated for three years (2016-2019), which constituted three environments (E1, E2 and E3). Heritability for different traits ranged from 29.21 to 97.69%. Marker-trait associations (MTAs) were identified for each trait using data from each environment separately and also using BLUP values. Four different models were used, which included three single trait models (CMLM, FarmCPU, SUPER) and one multi-trait model (mvLMM). Hundreds of MTAs were obtained using each model, but after Bonferroni correction, only 6 MTAs for 3 traits were available using CMLM, and 21 MTAs for 4 traits were available using FarmCPU; none of the 525 MTAs obtained using SUPER could qualify after Bonferroni correction. Using BLUP, 20 MTAs were available, five of which also figured among MTAs identified for individual environments. Using mvLMM model, after Bonferroni correction, 38 multi-trait MTAs, for 15 different trait combinations were available. Epistatic interactions involving 28 pairs of MTAs were also available for seven of the 10 traits; no epistatic interactions were available for GNPS, PH, and BYPP. As many as 164 putative candidate genes (CGs) were identified using all the 50 MTAs (CMLM, 3; FarmCPU, 9; mvLMM, 6, epistasis, 21 and BLUP, 11 MTAs), which ranged from 20 (CMLM) to 66 (epistasis) CGs. In-silico expression analysis of CGs was also conducted in different tissues at different developmental stages. The information generated through the present study proved useful for developing a better understanding of the genetics of each of the 10 traits; the study also provided novel markers for marker-assisted selection (MAS) to be utilized for the development of wheat cultivars with improved agronomic traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01240-1.
Collapse
Affiliation(s)
- Parveen Malik
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Jitendra Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
- National Agri-Food Biotechnology Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar, 140306 Punjab India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Prabina Kumar Meher
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Mukesh Kumar Sharma
- Department of Mathematics, Chaudhary Charan Singh University, Meerut 250004, India
| | - Joy Kumar Roy
- National Agri-Food Biotechnology Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar, 140306 Punjab India
| | - Pradeep Kumar Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| |
Collapse
|
9
|
Bai S, Wu H, Zhang J, Pan Z, Zhao W, Li Z, Tong C. Genome Assembly of Salicaceae Populus deltoides (Eastern Cottonwood) I-69 Based on Nanopore Sequencing and Hi-C Technologies. J Hered 2021; 112:303-310. [PMID: 33730157 PMCID: PMC8141683 DOI: 10.1093/jhered/esab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Populus deltoides has important ecological and economic values, widely used in poplar breeding programs due to its superior characteristics such as rapid growth and resistance to disease. Although the genome sequence of P. deltoides WV94 is available, the assembly is fragmented. Here, we reported an improved chromosome-level assembly of the P. deltoides cultivar I-69 by combining Nanopore sequencing and chromosome conformation capture (Hi-C) technologies. The assembly was 429.3 Mb in size and contained 657 contigs with a contig N50 length of 2.62 Mb. Hi-C scaffolding of the contigs generated 19 chromosome-level sequences, which covered 97.4% (418 Mb) of the total assembly size. Moreover, repetitive sequences annotation showed that 39.28% of the P. deltoides genome was composed of interspersed elements, including retroelements (23.66%), DNA transposons (6.83%), and unclassified elements (8.79%). We also identified a total of 44 362 protein-coding genes in the current P. deltoides assembly. Compared with the previous genome assembly of P. deltoides WV94, the current assembly had some significantly improved qualities: the contig N50 increased 3.5-fold and the proportion of gaps decreased from 3.2% to 0.08%. This high-quality, well-annotated genome assembly provides a reliable genomic resource for identifying genome variants among individuals, mining candidate genes that control growth and wood quality traits, and facilitating further application of genomics-assisted breeding in populations related to P. deltoides.
Collapse
Affiliation(s)
- Shengjun Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hainan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jinpeng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhiliang Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Wei Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhiting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Chunfa Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|