1
|
Hu N, Sanderson BJ, Guo M, Feng G, Gambhir D, Hale H, Wang D, Hyden B, Liu J, Smart LB, DiFazio SP, Ma T, Olson MS. Evolution of a ZW sex chromosome system in willows. Nat Commun 2023; 14:7144. [PMID: 37932261 PMCID: PMC10628195 DOI: 10.1038/s41467-023-42880-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Brian J Sanderson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Minghao Guo
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Guanqiao Feng
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Diksha Gambhir
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Haley Hale
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Hyden B, Carper DL, Abraham PE, Yuan G, Yao T, Baumgart L, Zhang Y, Chen C, O'Malley R, Chen J, Yang X, Hettich RL, Tuskan GA, Smart LB. Functional analysis of Salix purpurea genes support roles for ARR17 and GATA15 as master regulators of sex determination. PLANT DIRECT 2023; 7:e3546. [PMID: 38028649 PMCID: PMC10651977 DOI: 10.1002/pld3.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The Salicaceae family is of growing interest in the study of dioecy in plants because the sex determination region (SDR) has been shown to be highly dynamic, with differing locations and heterogametic systems between species. Without the ability to transform and regenerate Salix in tissue culture, previous studies investigating the mechanisms regulating sex in the genus Salix have been limited to genome resequencing and differential gene expression, which are mostly descriptive in nature, and functional validation of candidate sex determination genes has not yet been conducted. Here, we used Arabidopsis to functionally characterize a suite of previously identified candidate genes involved in sex determination and sex dimorphism in the bioenergy shrub willow Salix purpurea. Six candidate master regulator genes for sex determination were heterologously expressed in Arabidopsis, followed by floral proteome analysis. In addition, 11 transcription factors with predicted roles in mediating sex dimorphism downstream of the SDR were tested using DAP-Seq in both male and female S. purpurea DNA. The results of this study provide further evidence to support models for the roles of ARR17 and GATA15 as master regulator genes of sex determination in S. purpurea, contributing to a regulatory system that is notably different from that of its sister genus Populus. Evidence was also obtained for the roles of two transcription factors, an AP2/ERF family gene and a homeodomain-like transcription factor, in downstream regulation of sex dimorphism.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Dana L. Carper
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Paul E. Abraham
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Guoliang Yuan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Tao Yao
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Leo Baumgart
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Yu Zhang
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Cindy Chen
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Ronan O'Malley
- Lawrence Berkeley National LaboratoryUS Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Robert L. Hettich
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Gerald A. Tuskan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| |
Collapse
|
3
|
Hyden B, Zou J, Wilkerson DG, Carlson CH, Robles AR, DiFazio SP, Smart LB. Structural variation of a sex-linked region confers monoecy and implicates GATA15 as a master regulator of sex in Salix purpurea. THE NEW PHYTOLOGIST 2023; 238:2512-2523. [PMID: 36866707 DOI: 10.1111/nph.18853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 05/19/2023]
Abstract
The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination. To delimit genomic regions associated with monoecious expression, the 94003 genome sequence was assembled and DNA- and RNA-Seq of progeny inflorescences was performed. Based on alignments of progeny shotgun DNA sequences to the haplotype-resolved monoecious 94003 genome assembly and reference male and female genomes, a 1.15 Mb sex-linked region on Chr15W was confirmed to be absent in monecious plants. Inheritance of this structural variation is responsible for the loss of a male-suppressing function in what would otherwise be genetic females (ZW), resulting in monoecy (ZWH or WWH ), or lethality, if homozygous (WH WH ). We present a refined, two-gene sex determination model for Salix purpurea, mediated by ARR17 and GATA15 that is different from the single-gene ARR17-mediated system in the related genus Populus.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Junzhu Zou
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu No. 1, Haidian District, Beijing, 100091, China
| | - Dustin G Wilkerson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ayiana Rivera Robles
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| |
Collapse
|
4
|
Hyden B, Feng K, Yates TB, Jawdy S, Cereghino C, Smart LB, Muchero W. De Novo Assembly and Annotation of 11 Diverse Shrub Willow ( Salix) Genomes Reveals Novel Gene Organization in Sex-Linked Regions. Int J Mol Sci 2023; 24:2904. [PMID: 36769224 PMCID: PMC9917877 DOI: 10.3390/ijms24032904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Poplar and willow species in the Salicaceae are dioecious, yet have been shown to use different sex determination systems located on different chromosomes. Willows in the subgenus Vetrix are interesting for comparative studies of sex determination systems, yet genomic resources for these species are still quite limited. Only a few annotated reference genome assemblies are available, despite many species in use in breeding programs. Here we present de novo assemblies and annotations of 11 shrub willow genomes from six species. Copy number variation of candidate sex determination genes within each genome was characterized and revealed remarkable differences in putative master regulator gene duplication and deletion. We also analyzed copy number and expression of candidate genes involved in floral secondary metabolism, and identified substantial variation across genotypes, which can be used for parental selection in breeding programs. Lastly, we report on a genotype that produces only female descendants and identified gene presence/absence variation in the mitochondrial genome that may be responsible for this unusual inheritance.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Timothy B. Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Chelsea Cereghino
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
5
|
Evidence of Asexual Overwintering of Melampsora paradoxa and Mapping of Stem Rust Host Resistance in Salix. PLANTS 2022; 11:plants11182385. [PMID: 36145786 PMCID: PMC9502555 DOI: 10.3390/plants11182385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Melampsora rust is a devastating disease of shrub willow in North America. Previous work has identified Melampsora paradoxa as one of two identified rust species in New York State that infect Salix purpurea and other important Salix host species, however little is known about the population of this rust species in this region. Genotyping-by-sequencing was used to identify single nucleotide polymorphisms (SNPs) and assess population diversity of M. paradoxa isolates collected from three Salix breeding populations in Geneva, NY between 2015 and 2020. Statistical analyses of SNP revealed that all isolates collected were clonally derived even though they were collected across years. In 2020, isolates were collected from stem infections where uredospore pustules were observed, and these isolates were also identical to M. paradoxa collected in previous seasons. These data suggest that M. paradoxa sampled across multiple years overwintered and reproduced asexually and that stem infection is a possible mechanism for overwintering, both of which are novel findings for this rust species. Additionally, field disease ratings were conducted on a S. purpurea × S. suchowensis F1 breeding population with high disease severity, enabling the discovery of QTL for resistance on chromosomes 1 and 19. Lastly, Colletotrichum salicis was frequently associated with stem rust and may play a role in M. paradoxa stem infection. Together, this work is the first substantial exploration into M. paradoxa population biology, stem infection, and host resistance in Salix.
Collapse
|