1
|
Fornasiero A, Feng T, Al-Bader N, Alsantely A, Mussurova S, Hoang NV, Misra G, Zhou Y, Fabbian L, Mohammed N, Rivera Serna L, Thimma M, Llaca V, Parakkal P, Kudrna D, Copetti D, Rajasekar S, Lee S, Talag J, Sobel-Sorenson C, Carpentier MC, Panaud O, McNally KL, Zhang J, Zuccolo A, Schranz ME, Wing RA. Oryza genome evolution through a tetraploid lens. Nat Genet 2025; 57:1287-1297. [PMID: 40295881 PMCID: PMC12081313 DOI: 10.1038/s41588-025-02183-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Oryza is a remarkable genus comprising 27 species and 11 genome types, with ~3.4-fold genome size variation, that possesses a virtually untapped reservoir of genes that can be used for crop improvement and neodomestication. Here we present 11 chromosome-level assemblies (nine tetraploid, two diploid) in the context of ~15 million years of evolution and show that the core Oryza (sub)genome is only ~200 Mb and largely syntenic, whereas the remaining nuclear fractions (~80-600 Mb) are intermingled, plastic and rapidly evolving. For the halophyte Oryza coarctata, we found that despite detection of gene fractionation in the subgenomes, homoeologous genes were expressed at higher levels in one subgenome over the other in a mosaic form, demonstrating subgenome equivalence. The integration of these 11 new reference genomes with previously published genome datasets provides a nearly complete view of the consequences of evolution for genome diversification across the genus.
Collapse
Affiliation(s)
- Alice Fornasiero
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Tao Feng
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Noor Al-Bader
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aseel Alsantely
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Center for Vegetation Development and Combating Desertification (NCVC), Riyadh, Saudi Arabia
| | - Saule Mussurova
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Gopal Misra
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Zhou
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leonardo Fabbian
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nahed Mohammed
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis Rivera Serna
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manjula Thimma
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, USA
| | | | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Chandler Sobel-Sorenson
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Kenneth L McNally
- Rice Breeding Innovations Department, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Andrea Zuccolo
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Institute of Crop Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Rod A Wing
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Guo D, Li Y, Lu H, Zhao Y, Kurata N, Wei X, Wang A, Wang Y, Zhan Q, Fan D, Zhou C, Lu Y, Tian Q, Weng Q, Feng Q, Huang T, Zhang L, Gu Z, Wang C, Wang Z, Wang Z, Huang X, Zhao Q, Han B. A pangenome reference of wild and cultivated rice. Nature 2025:10.1038/s41586-025-08883-6. [PMID: 40240605 DOI: 10.1038/s41586-025-08883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Oryza rufipogon, the wild progenitor of Asian cultivated rice Oryza sativa, is an important resource for rice breeding1. Here we present a wild-cultivated rice pangenome based on 145 chromosome-level assemblies, comprising 129 genetically diverse O. rufipogon accessions and 16 diverse varieties of O. sativa. This pangenome contains 3.87 Gb of sequences that are absent from the O. sativa ssp. japonica cv. Nipponbare reference genome. We captured alternate assemblies that include heterozygous information missing in the primary assemblies, and identified a total of 69,531 pan-genes, with 28,907 core genes and 13,728 wild-rice-specific genes. We observed a higher abundance and a significantly greater diversity of resistance-gene analogues in wild rice than in cultivars. Our analysis indicates that two cultivated subpopulations, intro-indica and basmati, were generated through gene flows among cultivars in South Asia. We also provide strong evidence to support the theory that the initial domestication of all Asian cultivated rice occurred only once. Furthermore, we captured 855,122 differentiated single-nucleotide polymorphisms and 13,853 differentiated presence-absence variations between indica and japonica, which could be traced to the divergence of their respective ancestors and the existence of a larger genetic bottleneck in japonica. This study provides reference resources for enhancing rice breeding, and enriches our understanding of the origins and domestication process of rice.
Collapse
Affiliation(s)
- Dongling Guo
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hengyun Lu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nori Kurata
- Plant Genetics Laboratory and Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhoulin Gu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zixuan Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Chen C, Hu H, Guo H, Xia X, Zhang Z, Nong B, Feng R, Liang S, Liu B, Liu J, Li D, Zhao J, Yang X. Revealing Genomic Traits and Evolutionary Insights of Oryza officinalis from Southern China Through Genome Assembly and Transcriptome Analysis. RICE (NEW YORK, N.Y.) 2025; 18:15. [PMID: 40082317 PMCID: PMC11906960 DOI: 10.1186/s12284-025-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Wild rice, as the ancestor of cultivated rice, has accumulated a wide range of beneficial traits through prolonged natural selection and evolution. Oryza officinalis, belonging to the CC genome, differs significantly from the AA genome. In this study, we utilized second- and third-generation sequencing, along with Hi-C technology, to assemble the genome of MT10 (O. officinalis). The assembled genome is 552.58 Mb, with contigs and scaffold N50 values of 40.04 and 44.48 Mb, respectively, and 96.73% of the sequences anchored to 12 chromosomes. A total of 33,813 genes were annotated, and repetitive sequences account for 54.24% of the MT10 genome. The number of unique genes in MT10 exceeds that in the O. officinalis genome from Thailand, and their divergence time is estimated at 1.6 million years ago. The MT10 genome exhibits fewer expanded gene families compared to contracted ones, with the expanded families predominantly associated with disease and pest resistance. Comparative genomic analysis of MT10 and Nipponbare reveals sequence variations in biotic and abiotic resistance-related genes. In particular, the presence of R genes and cystatin gene families in MT10 may contribute to its unique insect resistance. Transcriptome analyses indicate that flavonoid biosynthesis and MAPK-related genes are expressed in response to brown planthopper infestation. This study represents the first chromosome-level genome assembly of MT10, providing a reference sequence for the efficient cloning of beneficial genes from O. officinalis, which holds significant potential for the genetic improvement of cultivated rice.
Collapse
Grants
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- GuikeAA22068087-2 Guangxi Department of Science and Technology
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 32360519, 3226047, 32160436, 32060476 and 31860371 National Natural Science Foundation of China
- 2023YM62, 2025YP032 Guangxi Academy of Agricultural Sciences
- 2023YM62, 2025YP032 Guangxi Academy of Agricultural Sciences
- 2023YM62, 2025YP032 Guangxi Academy of Agricultural Sciences
- 2021YFD1200505 National Key Research and Development Program of China
- 2021YFD1200505 National Key Research and Development Program of China
- 2021YFD1200505 National Key Research and Development Program of China
- 2021YFD1200505 National Key Research and Development Program of China
- 2021YFD1200505 National Key Research and Development Program of China
- 2021YFD1200505 National Key Research and Development Program of China
- 2021YFD1200505 National Key Research and Development Program of China
Collapse
Affiliation(s)
- Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Haifei Hu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Rice Science and Technology, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Nanning, 530004, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Shuhui Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Boheng Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianhui Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Nanning, 530004, China.
| | - Junliang Zhao
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Rice Science and Technology, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Nanning, 530004, China.
| |
Collapse
|
4
|
Zhang T, Huang W, Zhang L, Li DZ, Qi J, Ma H. Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages. Nat Commun 2024; 15:3305. [PMID: 38632270 PMCID: PMC11024178 DOI: 10.1038/s41467-024-47428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Poaceae members shared a whole-genome duplication called rho. However, little is known about the evolutionary pattern of the rho-derived duplicates among Poaceae lineages and implications in adaptive evolution. Here we present phylogenomic/phylotranscriptomic analyses of 363 grasses covering all 12 subfamilies and report nine previously unknown whole-genome duplications. Furthermore, duplications from a single whole-genome duplication were mapped to multiple nodes on the species phylogeny; a whole-genome duplication was likely shared by woody bamboos with possible gene flow from herbaceous bamboos; and recent paralogues of a tetraploid Oryza are implicated in tolerance of seawater submergence. Moreover, rho duplicates showing differential retention among subfamilies include those with functions in environmental adaptations or morphogenesis, including ACOT for aquatic environments (Oryzoideae), CK2β for cold responses (Pooideae), SPIRAL1 for rapid cell elongation (Bambusoideae), and PAI1 for drought/cold responses (Panicoideae). This study presents a Poaceae whole-genome duplication profile with evidence for multiple evolutionary mechanisms that contribute to gene retention and losses.
Collapse
Affiliation(s)
- Taikui Zhang
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Weichen Huang
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ji Qi
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
5
|
Sinha P, Kumar T. D, Sk H, Solanki M, Gokulan CG, Das A, Miriyala A, Gonuguntala R, Elumalai P, M. B. V. N K, S. K. M, Kumboju C, Arra Y, G. S. L, Chirravuri NN, Patel HK, Ghazi IA, Kim SR, Jena KK, Hanumanth SR, Oliva R, Mangrauthia SK, Sundaram RM. Fine mapping and sequence analysis reveal a promising candidate gene encoding a novel NB-ARC domain derived from wild rice ( Oryza officinalis) that confers bacterial blight resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1173063. [PMID: 37692438 PMCID: PMC10485833 DOI: 10.3389/fpls.2023.1173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious constraints in rice production. The most sustainable strategy to combat the disease is the deployment of host plant resistance. Earlier, we identified an introgression line, IR 75084-15-3-B-B, derived from Oryza officinalis possessing broad-spectrum resistance against Xoo. In order to understand the inheritance of resistance in the O. officinalis accession and identify genomic region(s) associated with resistance, a recombinant inbred line (RIL) mapping population was developed from the cross Samba Mahsuri (susceptible to bacterial blight) × IR 75084-15-3-B-B (resistant to bacterial blight). The F2 population derived from the cross segregated in a phenotypic ratio of 3: 1 (resistant susceptible) implying that resistance in IR 75084-15-3-B-B is controlled by a single dominant gene/quantitative trait locus (QTL). In the F7 generation, a set of 47 homozygous resistant lines and 47 homozygous susceptible lines was used to study the association between phenotypic data obtained through screening with Xoo and genotypic data obtained through analysis of 7K rice single-nucleotide polymorphism (SNP) chip. Through composite interval mapping, a major locus was detected in the midst of two flanking SNP markers, viz., Chr11.27817978 and Chr11.27994133, on chromosome 11L with a logarithm of the odds (LOD) score of 10.21 and 35.93% of phenotypic variation, and the locus has been named Xa48t. In silico search in the genomic region between the two markers flanking Xa48t identified 10 putatively expressed genes located in the region of interest. The quantitative expression and DNA sequence analysis of these genes from contrasting parents identified the Os11g0687900 encoding an NB-ARC domain-containing protein as the most promising gene associated with resistance. Interestingly, a 16-bp insertion was noticed in the untranslated region (UTR) of the gene in the resistant parent, IR 75084-15-3-B-B, which was absent in Samba Mahsuri. The association of Os11g0687900 with resistance phenotype was further established by sequence-based DNA marker analysis in the RIL population. A co-segregating PCR-based INDEL marker, Marker_Xa48, has been developed for use in the marker-assisted breeding of Xa48t.
Collapse
Affiliation(s)
- Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Dilip Kumar T.
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Manish Solanki
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - C. G. Gokulan
- Crop Improvement, Council of Scientific & Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ayyappa Das
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Anila Miriyala
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | - Punniakoti Elumalai
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Kousik M. B. V. N
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Masthani S. K.
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Chaitra Kumboju
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Yugander Arra
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
- Institute of Molecular Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Laha G. S.
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - N. Neerja Chirravuri
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Hitendra Kumar Patel
- Crop Improvement, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sung-Ryul Kim
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Kshirod K. Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, India
| | | | - Ricardo Oliva
- Safe and Sustainable Value Chain, World Vegetable Center, Tainan, Taiwan
| | | | | |
Collapse
|
6
|
Alsantely A, Gutaker R, Navarrete Rodríguez ME, Arrieta-Espinoza G, Fuchs EJ, Costa de Oliveira A, Tohme J, Zuccolo A, Wing RA, Fornasiero A. The International Oryza Map Alignment Project (IOMAP): the Americas-past achievements and future directions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1331-1342. [PMID: 36527431 PMCID: PMC10010607 DOI: 10.1093/jxb/erac490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The wild relatives of rice hold unexplored genetic diversity that can be employed to feed an estimated population of 10 billion by 2050. The Oryza Map Alignment Project (OMAP) initiated in 2003 has provided comprehensive genomic resources for comparative, evolutionary, and functional characterization of the wild relatives of rice, facilitating the cloning of >600 rice genes, including those for grain width (GW5) and submergence tolerance (SUB1A). Following in the footsteps of the original project, the goal of 'IOMAP: the Americas' is to investigate the present and historic genetic diversity of wild Oryza species endemic to the Americas through the sequencing of herbaria and in situ specimens. The generation of a large diversity panel describing past and current genetic status and potential erosion of genetic variation in the populations will provide useful knowledge for the conservation of the biodiversity in these species. The wild relatives of rice in the Americas present a wide range of resistance traits useful for crop improvement and neodomestication approaches. In the race against time for a sustainable food future, the neodomestication of the first cereal species recently accomplished in O. alta opens the door to the potential neodomestication of the other wild Oryza species in Americas.
Collapse
Affiliation(s)
- Aseel Alsantely
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rafal Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - María E Navarrete Rodríguez
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Griselda Arrieta-Espinoza
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, Ciudad de la Investigación-C.P., San José 11501-2050, Costa Rica
| | - Eric J Fuchs
- Escuela de Biología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Joe Tohme
- International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Crop Science Research Center, Sant’Anna School of Advanced Studies, Pisa 56127, Italy
| | | | | |
Collapse
|
7
|
Lu R, Liu J, Wang X, Song Z, Ji X, Li N, Ma G, Sun X. Chromosome-Level Genome Assembly of a Fragrant Japonica Rice Cultivar 'Changxianggeng 1813' Provides Insights into Genomic Variations between Fragrant and Non-Fragrant Japonica Rice. Int J Mol Sci 2022; 23:9705. [PMID: 36077110 PMCID: PMC9456513 DOI: 10.3390/ijms23179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
East Asia has an abundant resource of fragrant japonica rice that is gaining increasing interest among both consumers and producers. However, genomic resources and in particular complete genome sequences currently available for the breeding of fragrant japonica rice are still scarce. Here, integrating Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods, we presented a high-quality chromosome-level genome assembly (~378.78 Mb) for a new fragrant japonica cultivar ‘Changxianggeng 1813’, with 31,671 predicated protein-coding genes. Based on the annotated genome sequence, we demonstrated that it was the badh2-E2 type of deletion (a 7-bp deletion in the second exon) that caused fragrance in ‘Changxianggeng 1813’. Comparative genomic analyses revealed that multiple gene families involved in the abiotic stress response were expanded in the ‘Changxianggeng 1813’ genome, which further supported the previous finding that no generalized loss of abiotic stress tolerance associated with the fragrance phenotype. Although the ‘Changxianggeng 1813’ genome showed high genomic synteny with the genome of the non-fragrant japonica rice cultivar Nipponbare, a total of 289,970 single nucleotide polymorphisms (SNPs), 96,093 small insertion-deletion polymorphisms (InDels), and 8690 large structure variants (SVs, >1000 bp) were identified between them. Together, these genomic resources will be valuable for elucidating the mechanisms underlying economically important traits and have wide-ranging implications for genomics-assisted breeding in fragrant japonica rice.
Collapse
Affiliation(s)
- Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xuegang Wang
- Changshu Agricultural Science Research Institute, Changshu 215500, China
| | - Zhao Song
- Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Xiangdong Ji
- Changshu Agricultural Science Research Institute, Changshu 215500, China
| | - Naiwei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Gang Ma
- Changshu Agricultural Science Research Institute, Changshu 215500, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
8
|
Yamamoto N, Tong W, Lv B, Peng Z, Yang Z. The Original Form of C 4-Photosynthetic Phospho enolpyruvate Carboxylase Is Retained in Pooids but Lost in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905894. [PMID: 35958195 PMCID: PMC9358456 DOI: 10.3389/fpls.2022.905894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Poaceae is the most prominent monocot family that contains the primary cereal crops wheat, rice, and maize. These cereal species exhibit physiological diversity, such as different photosynthetic systems and environmental stress tolerance. Phosphoenolpyruvate carboxylase (PEPC) in Poaceae is encoded by a small multigene family and plays a central role in C4-photosynthesis and dicarboxylic acid metabolism. Here, to better understand the molecular basis of the cereal species diversity, we analyzed the PEPC gene family in wheat together with other grass species. We could designate seven plant-type and one bacterial-type grass PEPC groups, ppc1a, ppc1b, ppc2a, ppc2b, ppc3, ppc4, ppcC4, and ppc-b, respectively, among which ppc1b is an uncharacterized type of PEPC. Evolutionary inference revealed that these PEPCs were derived from five types of ancient PEPCs (ppc1, ppc2, ppc3, ppc4, and ppc-b) in three chromosomal blocks of the ancestral Poaceae genome. C4-photosynthetic PEPC (ppcC4 ) had evolved from ppc1b, which seemed to be arisen by a chromosomal duplication event. We observed that ppc1b was lost in many Oryza species but preserved in Pooideae after natural selection. In silico analysis of cereal RNA-Seq data highlighted the preferential expression of ppc1b in upper ground organs, selective up-regulation of ppc1b under osmotic stress conditions, and nitrogen response of ppc1b. Characterization of wheat ppc1b showed high levels of gene expression in young leaves, transcriptional responses under nitrogen and abiotic stress, and the presence of a Dof1 binding site, similar to ppcC4 in maize. Our results indicate the evolving status of Poaceae PEPCs and suggest the functional association of ppc1-derivatives with adaptation to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Wurina Tong
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Bingbing Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang College, Xichang, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| |
Collapse
|
9
|
Phillips AL, Ferguson S, Watson-Haigh NS, Jones AW, Borevitz JO, Burton RA, Atwell BJ. The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from northern Australia. Sci Rep 2022; 12:10823. [PMID: 35752642 PMCID: PMC9233661 DOI: 10.1038/s41598-022-14893-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46× long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.
Collapse
Affiliation(s)
- Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Nathan S Watson-Haigh
- South Australian Genomics Centre, University of Adelaide, Adelaide, SA, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ashley W Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Rachel A Burton
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Unveiling a Novel Source of Resistance to Bacterial Blight in Medicinal Wild Rice, Oryza officinalis. Life (Basel) 2022; 12:life12060827. [PMID: 35743858 PMCID: PMC9225586 DOI: 10.3390/life12060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is among the oldest known bacterial diseases found for rice in Asia. It is the most serious bacterial disease in many rice growing regions of the world. A total of 47 resistance (R) genes (Xa1 to Xa47) have been identified. Nonetheless, these R genes could possibly be defeated to lose their qualitative nature and express intermediate phenotypes. The identification of sources of novel genetic loci regulating host plant resistance is crucial to develop an efficient control strategy. Wild ancestors of cultivated rice are a natural genetic resource contain a large number of excellent genes. Medicinal wild rice (Oryza officinalis) belongs to the CC genome and is a well-known wild rice in south China. In this study, O. officinalis was crossed with cultivated rice HY-8 and their hybrids were screened for BB resistance genes deployed through natural selection in wild rice germplasm. The molecular markers linked to R genes for BB were used to screen the genomic regions in wild parents and their recombinants. The gene coding and promoter regions of major R genes were inconsistently found in O. officinalis and its progenies. Oryza officinalis showed resistance to all thirty inoculated Xoo strains with non-availability of various known R genes. The results indicated the presence of novel genomic regions for BB resistance in O. officinalis. The present study not only provides a reference to investigate medicinal rice for R gene(s) identification against BB but also identified it as a new breeding material for BB resistance.
Collapse
|
11
|
Toulotte JM, Pantazopoulou CK, Sanclemente MA, Voesenek LACJ, Sasidharan R. Water stress resilient cereal crops: Lessons from wild relatives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:412-430. [PMID: 35029029 PMCID: PMC9255596 DOI: 10.1111/jipb.13222] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 05/20/2023]
Abstract
Cereal crops are significant contributors to global diets. As climate change disrupts weather patterns and wreaks havoc on crops, the need for generating stress-resilient, high-yielding varieties is more urgent than ever. One extremely promising avenue in this regard is to exploit the tremendous genetic diversity expressed by the wild ancestors of current day crop species. These crop wild relatives thrive in a range of environments and accordingly often harbor an array of traits that allow them to do so. The identification and introgression of these traits into our staple cereal crops can lessen yield losses in stressful environments. In the last decades, a surge in extreme drought and flooding events have severely impacted cereal crop production. Climate models predict a persistence of this trend, thus reinforcing the need for research on water stress resilience. Here we review: (i) how water stress (drought and flooding) impacts crop performance; and (ii) how identification of tolerance traits and mechanisms from wild relatives of the main cereal crops, that is, rice, maize, wheat, and barley, can lead to improved survival and sustained yields in these crops under water stress conditions.
Collapse
Affiliation(s)
- Justine M. Toulotte
- Department of Biology, Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| | - Chrysoula K. Pantazopoulou
- Department of Biology, Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| | - Maria Angelica Sanclemente
- Department of Biology, Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| | - Laurentius A. C. J. Voesenek
- Department of Biology, Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| | - Rashmi Sasidharan
- Department of Biology, Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| |
Collapse
|
12
|
Yong MT, Solis CA, Amatoury S, Sellamuthu G, Rajakani R, Mak M, Venkataraman G, Shabala L, Zhou M, Ghannoum O, Holford P, Huda S, Shabala S, Chen ZH. Proto Kranz-like leaf traits and cellular ionic regulation are associated with salinity tolerance in a halophytic wild rice. STRESS BIOLOGY 2022; 2:8. [PMID: 37676369 PMCID: PMC10441962 DOI: 10.1007/s44154-021-00016-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/17/2021] [Indexed: 09/08/2023]
Abstract
Species of wild rice (Oryza spp.) possess a wide range of stress tolerance traits that can be potentially utilized in breeding climate-resilient cultivated rice cultivars (Oryza sativa) thereby aiding global food security. In this study, we conducted a greenhouse trial to evaluate the salinity tolerance of six wild rice species, one cultivated rice cultivar (IR64) and one landrace (Pokkali) using a range of electrophysiological, imaging, and whole-plant physiological techniques. Three wild species (O. latifolia, O. officinalis and O. coarctata) were found to possess superior salinity stress tolerance. The underlying mechanisms, however, were strikingly different. Na+ accumulation in leaves of O. latifolia, O. officinalis and O. coarctata were significantly higher than the tolerant landrace, Pokkali. Na+ accumulation in mesophyll cells was only observed in O. coarctata, suggesting that O. officinalis and O. latifolia avoid Na+ accumulation in mesophyll by allocating Na+ to other parts of the leaf. The finding also suggests that O. coarctata might be able to employ Na+ as osmolyte without affecting its growth. Further study of Na+ allocation in leaves will be helpful to understand the mechanisms of Na+ accumulation in these species. In addition, O. coarctata showed Proto Kranz-like leaf anatomy (enlarged bundle sheath cells and lower numbers of mesophyll cells), and higher expression of C4-related genes (e.g., NADPME, PPDK) and was a clear outlier with respect to salinity tolerance among the studied wild and cultivated Oryza species. The unique phylogenetic relationship of O. coarctata with C4 grasses suggests the potential of this species for breeding rice with high photosynthetic rate under salinity stress in the future.
Collapse
Affiliation(s)
- Miing-Tiem Yong
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Celymar Angela Solis
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Samuel Amatoury
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, -600113, Chennai, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, -600113, Chennai, India
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, -600113, Chennai, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Samsul Huda
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia.
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
13
|
Dai SF, Zhu XG, Hutang GR, Li JY, Tian JQ, Jiang XH, Zhang D, Gao LZ. Genome Size Variation and Evolution Driven by Transposable Elements in the Genus Oryza. FRONTIERS IN PLANT SCIENCE 2022; 13:921937. [PMID: 35874017 PMCID: PMC9301470 DOI: 10.3389/fpls.2022.921937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 05/08/2023]
Abstract
Genome size variation and evolutionary forces behind have been long pursued in flowering plants. The genus Oryza, consisting of approximately 25 wild species and two cultivated rice, harbors eleven extant genome types, six of which are diploid (AA, BB, CC, EE, FF, and GG) and five of which are tetraploid (BBCC, CCDD, HHJJ, HHKK, and KKLL). To obtain the most comprehensive knowledge of genome size variation in the genus Oryza, we performed flow cytometry experiments and estimated genome sizes of 166 accessions belonging to 16 non-AA genome Oryza species. k-mer analyses were followed to verify the experimental results of the two accessions for each species. Our results showed that genome sizes largely varied fourfold in the genus Oryza, ranging from 279 Mb in Oryza brachyantha (FF) to 1,203 Mb in Oryza ridleyi (HHJJ). There was a 2-fold variation (ranging from 570 to 1,203 Mb) in genome size among the tetraploid species, while the diploid species had 3-fold variation, ranging from 279 Mb in Oryza brachyantha (FF) to 905 Mb in Oryza australiensis (EE). The genome sizes of the tetraploid species were not always two times larger than those of the diploid species, and some diploid species even had larger genome sizes than those of tetraploids. Nevertheless, we found that genome sizes of newly formed allotetraploids (BBCC-) were almost equal to totaling genome sizes of their parental progenitors. Our results showed that the species belonging to the same genome types had similar genome sizes, while genome sizes exhibited a gradually decreased trend during the evolutionary process in the clade with AA, BB, CC, and EE genome types. Comparative genomic analyses further showed that the species with different rice genome types may had experienced dissimilar amplification histories of retrotransposons, resulting in remarkably different genome sizes. On the other hand, the closely related rice species may have experienced similar amplification history. We observed that the contents of transposable elements, long terminal repeats (LTR) retrotransposons, and particularly LTR/Gypsy retrotransposons varied largely but were significantly correlated with genome sizes. Therefore, this study demonstrated that LTR retrotransposons act as an active driver of genome size variation in the genus Oryza.
Collapse
Affiliation(s)
- Shuang-feng Dai
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Xun-ge Zhu
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ge-rang Hutang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jia-yue Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jia-qi Tian
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Xian-hui Jiang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Dan Zhang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Li-zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Li-zhi Gao,
| |
Collapse
|
14
|
Sato Y, Tsuda K, Yamagata Y, Matsusaka H, Kajiya-Kanegae H, Yoshida Y, Agata A, Ta KN, Shimizu-Sato S, Suzuki T, Nosaka-Takahashi M, Kubo T, Kawamoto S, Nonomura KI, Yasui H, Kumamaru T. Collection, preservation and distribution of Oryza genetic resources by the National Bioresource Project RICE (NBRP-RICE). BREEDING SCIENCE 2021; 71:291-298. [PMID: 34776736 PMCID: PMC8573556 DOI: 10.1270/jsbbs.21005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 05/26/2023]
Abstract
Biological resources are the basic infrastructure of bioscience research. Rice (Oryza sativa L.) is a good experimental model for research in cereal crops and monocots and includes important genetic materials used in breeding. The availability of genetic materials, including mutants, is important for rice research. In addition, Oryza species are attractive to researchers for both finding useful genes for breeding and for understanding the mechanism of genome evolution that enables wild plants to adapt to their own habitats. NBRP-RICE contributes to rice research by promoting the usage of genetic materials, especially wild Oryza accessions and mutant lines. Our activity includes collection, preservation and distribution of those materials and the provision of basic information on them, such as morphological and physiological traits and genomic information. In this review paper, we introduce the activities of NBRP-RICE and our database, Oryzabase, which facilitates the access to NBRP-RICE resources and their genomic sequences as well as the current situation of wild Oryza genome sequencing efforts by NBRP-RICE and other institutes.
Collapse
Affiliation(s)
- Yutaka Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yoshiyuki Yamagata
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Hiroaki Matsusaka
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Hiromi Kajiya-Kanegae
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Yuri Yoshida
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Ayumi Agata
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kim Nhung Ta
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Sae Shimizu-Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Misuzu Nosaka-Takahashi
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takahiko Kubo
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Shoko Kawamoto
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hideshi Yasui
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Toshihiro Kumamaru
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Kajiya-Kanegae H, Ohyanagi H, Ebata T, Tanizawa Y, Onogi A, Sawada Y, Hirai MY, Wang ZX, Han B, Toyoda A, Fujiyama A, Iwata H, Tsuda K, Suzuki T, Nosaka-Takahashi M, Nonomura KI, Nakamura Y, Kawamoto S, Kurata N, Sato Y. OryzaGenome2.1: Database of Diverse Genotypes in Wild Oryza Species. RICE (NEW YORK, N.Y.) 2021; 14:24. [PMID: 33661371 PMCID: PMC7933306 DOI: 10.1186/s12284-021-00468-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/17/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND OryzaGenome ( http://viewer.shigen.info/oryzagenome21detail/index.xhtml ), a feature within Oryzabase ( https://shigen.nig.ac.jp/rice/oryzabase/ ), is a genomic database for wild Oryza species that provides comparative and evolutionary genomics approaches for the rice research community. RESULTS Here we release OryzaGenome2.1, the first major update of OryzaGenome. The main feature in this version is the inclusion of newly sequenced genotypes and their meta-information, giving a total of 217 accessions of 19 wild Oryza species (O. rufipogon, O. barthii, O. longistaminata, O. meridionalis, O. glumaepatula, O. punctata, O. minuta, O. officinalis, O. rhizomatis, O. eichingeri, O. latifolia, O. alta, O. grandiglumis, O. australiensis, O. brachyantha, O. granulata, O. meyeriana, O. ridleyi, and O. longiglumis). These 19 wild species belong to 9 genome types (AA, BB, CC, BBCC, CCDD, EE, FF, GG, and HHJJ), representing wide genomic diversity in the genus. Using the genotype information, we analyzed the genome diversity of Oryza species. Other features of OryzaGenome facilitate the use of information on single nucleotide polymorphisms (SNPs) between O. sativa and its wild progenitor O. rufipogon in rice research, including breeding as well as basic science. For example, we provide Variant Call Format (VCF) files for genome-wide SNPs of 33 O. rufipogon accessions against the O. sativa reference genome, IRGSP1.0. In addition, we provide a new SNP Effect Table function, allowing users to identify SNPs or small insertion/deletion polymorphisms in the 33 O. rufipogon accessions and to search for the effect of these polymorphisms on protein function if they reside in the coding region (e.g., are missense or nonsense mutations). Furthermore, the SNP Viewer for 446 O. rufipogon accessions was updated by implementing new tracks for possible selective sweep regions and highly mutated regions that were potentially exposed to selective pressures during the process of domestication. CONCLUSION OryzaGenome2.1 focuses on comparative genomic analysis of diverse wild Oryza accessions collected around the world and on the development of resources to speed up the identification of critical trait-related genes, especially from O. rufipogon. It aims to promote the use of genotype information from wild accessions in rice breeding and potential future crop improvements. Diverse genotypes will be a key resource for evolutionary studies in Oryza, including polyploid biology.
Collapse
Affiliation(s)
- Hiromi Kajiya-Kanegae
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo 1-1-1, Tokyo, 113-8657, Japan
| | - Hajime Ohyanagi
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Biological and Environmental Sciences & Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Toshinobu Ebata
- Dynacom Co., Ltd., World Business Garden, Marive East 25F, 2-6-1, Nakase, Mihama-ku, Chiba-shi, Chiba, 261-7125, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Akio Onogi
- Institute of Crop Science, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Zi-Xuan Wang
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, China
| | - Atsushi Toyoda
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo 1-1-1, Tokyo, 113-8657, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | | | - Ken-Ichi Nonomura
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Shoko Kawamoto
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Nori Kurata
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Sato
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
16
|
Bian W, Liu X, Zhang Z, Zhang H. Transcriptome analysis of diploid and triploid Populus tomentosa. PeerJ 2020; 8:e10204. [PMID: 33194408 PMCID: PMC7602689 DOI: 10.7717/peerj.10204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Triploid Chinese white poplar (Populus tomentosa Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid P. tomentosa. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of P. tomentosa varieties in the future. In this study, the cuttings of diploid and triploid P. tomentosa were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid P. tomentosa transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of MDH and CYCD3 in tissue-cultured and greenhouse planted triploid P. tomentosa were higher than those in tissue-cultured diploid P. tomentosa, which was consist ent with the TMM values calculated by transcriptome.
Collapse
Affiliation(s)
- Wen Bian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Shimizu-Sato S, Tsuda K, Nosaka-Takahashi M, Suzuki T, Ono S, Ta KN, Yoshida Y, Nonomura KI, Sato Y. Agrobacterium-Mediated Genetic Transformation of Wild Oryza Species Using Immature Embryos. RICE (NEW YORK, N.Y.) 2020; 13:33. [PMID: 32495182 PMCID: PMC7270233 DOI: 10.1186/s12284-020-00394-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 05/15/2023]
Abstract
Genetic transformation is one of the most important technologies for revealing or modulating gene function. It is used widely in both functional genomics and molecular breeding of rice. Demands on its use in wild Oryza species is increasing because of their high genetic diversity. Given the difficulties in genetic crosses between distantly related species, genetic transformation offers a way to alter or transfer genetic traits in wild rice accessions. However, transformation of wild Oryza accessions by conventional methods using calli induced from scutellum tissue of embryos in mature seeds often fails. Here, we report methods using immature embryos for the genetic transformation of a broad range of Oryza species. First, we investigated the ability of callus induction and regeneration from immature embryos of 192 accessions in 20 species under several culture conditions. We regenerated plants from immature embryos of 90 accessions in 16 species. Next, we optimized the conditions of Agrobacterium infection using a vector carrying the GFP gene driven by the maize ubiquitin promoter. GFP signals were observed in 51 accessions in 11 species. We analyzed the growth and seed set of transgenic plants of O. barthii, O. glumaepatula, O. rufipogon, and O. brachyantha. The plants grew to maturity and set seeds normally. Southern blot analyses using DNA from T0 plants showed that all GFP plants were derived from independent transformation events. We confirmed that the T-DNAs were transmitted to the next generation through the segregation of GFP signals in the T1 generation. These results show that many Oryza species can be transformed by using modified immature-embryo methods. This will accelerate the use of wild Oryza accessions in molecular genetic analyses and molecular breeding.
Collapse
Affiliation(s)
- Sae Shimizu-Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | | | - Toshiya Suzuki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Seijiro Ono
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Kim Nhung Ta
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yuri Yoshida
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|