1
|
Luo S, Xiao B, Geng J, Hu S. multiMotif: a generalized tool for scanning and visualization of diverse and distant multiple motifs. J Genet Genomics 2024; 51:1342-1345. [PMID: 38992773 DOI: 10.1016/j.jgg.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Sainan Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Binghan Xiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jianing Geng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Zhang J, Chang Y, Zhang P, Zhang Y, Wei M, Han C, Wang S, Lu HM, Cai T, Xie C. On the evolutionary trail of MagRs. Zool Res 2024; 45:821-830. [PMID: 38894524 PMCID: PMC11298677 DOI: 10.24272/j.issn.2095-8137.2024.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Magnetic sense, or termed magnetoreception, has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation. MagRs, highly conserved A-type iron-sulfur proteins, are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis. However, the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear. In this study, MagR sequences from 131 species, ranging from bacteria to humans, were selected for analysis, with 23 representative sequences covering species from prokaryotes to Mollusca, Arthropoda, Osteichthyes, Reptilia, Aves, and mammals chosen for protein expression and purification. Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution. Three types of MagRs were identified, each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability, indicating continuous expansion of the functional roles of MagRs during speciation and evolution. This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs.
Collapse
Affiliation(s)
- Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yafei Chang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Chenyang Han
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Hui-Meng Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| |
Collapse
|
3
|
Zhang Y, Zhang P, Wang J, Zhang J, Tong T, Zhou X, Zhou Y, Wei M, Feng C, Li J, Zhang X, Xie C, Cai T. Mitochondrial targeting sequence of magnetoreceptor MagR: More than just targeting. Zool Res 2024; 45:468-477. [PMID: 38583938 PMCID: PMC11188603 DOI: 10.24272/j.issn.2095-8137.2023.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 04/09/2024] Open
Abstract
Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
Collapse
Affiliation(s)
- Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yajie Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Mengke Wei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinqian Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| |
Collapse
|
4
|
Lai M, Qian Y, Wu YH, Han C, Liu Q. Devosia aquimaris sp. nov., isolated from seawater of the Changjiang River estuary of China. Antonie Van Leeuwenhoek 2024; 117:29. [PMID: 38280102 DOI: 10.1007/s10482-023-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/29/2024]
Abstract
A gram-stain-negative, aerobic, rod-shaped bacterium strain CJK-A8-3T was isolated from a polyamine-enriched seawater sample collected from the Changjiang River estuary of China. The colonies were white and circular. Strain CJK-A8-3T grew optimally at 35 °C, pH 7.0 and 1.5% NaCl. Its polar lipids contained phosphatidylglycerol, phosphatidic acid, unidentified glycolipids, and a combination of phospholipids and glycolipids. The respiratory quinone was ubiquinone-10, and its main fatty acids were C16:0, 11-methyl C18:1ω7c and Summed Feature 8 (including C18:1ω7c/C18:1ω6c). The phylogenetic tree based on 16S rRNA genes placed strain CJK-A8-3T in a new linage within the genus Devosia. 16S rRNA gene sequence of strain CJK-A8-3T showed identities of 98.50% with Devosia beringensis S02T, 98.15% with D. oryziradicis, and 98.01% with D. submarina JCM 18935T. The genome size of strain CJK-A8-3T was 3.81 Mb with the DNA G + C content 63.9%, higher than those of the reference strains (60.4-63.8%). The genome contained genes functional in the metabolism of terrigenous aromatic compounds, alkylphosphonate and organic nitrogen, potentially beneficial for nutrient acquirement and environmental remediation. It also harbored genes functional in antibiotics resistance and balance of osmotic pressure, enhancing their adaptation to estuarine environments. Both genomic investigation and experimental verification showed that strain CJK-A8-3T could be versatile and efficient to use diverse organic nitrogen compounds as carbon and nitrogen sources. Based on phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, strain CJK-A8-3T was identified as a novel Devosia species, named as Devosia aquimaris sp. nov. The type strain is CJK-A8-3T (= MCCC 1K06953T = KCTC 92162T).
Collapse
Affiliation(s)
- Mingyan Lai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yurong Qian
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China
- Ocean College, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Chenhua Han
- Institute of Polar and Ocean Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Qian Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Ocean College, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
6
|
Zhou Y, Tong T, Wei M, Zhang P, Fei F, Zhou X, Guo Z, Zhang J, Xu H, Zhang L, Wang S, Wang J, Cai T, Zhang X, Xie C. Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically. Zool Res 2023; 44:142-152. [PMID: 36484226 PMCID: PMC9841195 DOI: 10.24272/j.issn.2095-8137.2022.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to navigate long distances is essential for many animals to locate shelter, food, and breeding grounds. Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field. A highly conserved iron-sulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor (MagR). Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception. In the current study, we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons, an avian species that relies on the geomagnetic field for navigation and homing. Pigeon MagR showed significantly higher total iron content from both iron- and iron-sulfur binding. Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding, and its mutation abolished iron-binding capacity of the protein. Surprisingly, both iron binding and iron-sulfur binding demonstrated synergistic effects, and thus appear to be integral and indispensable to pigeon MagR magnetism. These results not only extend our current understanding of the origin and complexity of MagR magnetism, but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.
Collapse
Affiliation(s)
- Yajie Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Zhen Guo
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Huangtao Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Junfeng Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China,E-mail:
| |
Collapse
|
7
|
Parmagnani AS, D'Alessandro S, Maffei ME. Iron-sulfur complex assembly: Potential players of magnetic induction in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111483. [PMID: 36183809 DOI: 10.1016/j.plantsci.2022.111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron-sulfur (Fe-S) clusters are involved in fundamental biological reactions and represent a highly regulated process involving a complex sequence of mitochondrial, cytosolic and nuclear-catalyzed protein-protein interactions. Iron-sulfur complex assembly (ISCA) scaffold proteins are involved in Fe-S cluster biosynthesis, nitrogen and sulfur metabolism. ISCA proteins are involved in abiotic stress responses and in the pigeon they act as a magnetic sensor by forming a magnetosensor (MagS) complex with cryptochrome (Cry). MagR gene exists in the genomes of humans, plants, and microorganisms and the interaction between Cry and MagR is highly conserved. Owing to the extensive presence of ISCA proteins in plants and the occurrence of homology between animal and human MagR with at least four Arabidopsis ISCAs and several ISCAs from different plant species, we believe that a mechanism similar to pigeon magnetoperception might be present in plants. We suggest that plant ISCA proteins, homologous of the animal MagR, are good candidates and could contribute to a better understanding of plant magnetic induction. We thus urge more studies in this regard to fully uncover the plant molecular mechanisms underlying MagR/Cry mediated magnetic induction and the possible coupling between light and magnetic induction.
Collapse
Affiliation(s)
- Ambra S Parmagnani
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D'Alessandro
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Massimo E Maffei
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy.
| |
Collapse
|