1
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
2
|
Zhao T, Ma L, Xu S, Cai W, Li H, Duan Y. Narrowing down the candidates of beneficial A-to-I RNA editing by comparing the recoding sites with uneditable counterparts. Nucleus 2024; 15:2304503. [PMID: 38286757 PMCID: PMC10826634 DOI: 10.1080/19491034.2024.2304503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Adar-mediated adenosine-to-inosine (A-to-I) RNA editing mainly occurs in nucleus and diversifies the transcriptome in a flexible manner. It has been a challenging task to identify beneficial editing sites from the sea of total editing events. The functional Ser>Gly auto-recoding site in insect Adar gene has uneditable Ser codons in ancestral nodes, indicating the selective advantage to having an editable status. Here, we extended this case study to more metazoan species, and also looked for all Drosophila recoding events with potential uneditable synonymous codons. Interestingly, in D. melanogaster, the abundant nonsynonymous editing is enriched in the codons that have uneditable counterparts, but the Adar Ser>Gly case suggests that the editable orthologous codons in other species are not necessarily edited. The use of editable versus ancestral uneditable codon is a smart way to infer the selective advantage of RNA editing, and priority might be given to these editing sites for functional studies due to the feasibility to construct an uneditable allele. Our study proposes an idea to narrow down the candidates of beneficial recoding sites. Meanwhile, we stress that the matched transcriptomes are needed to verify the conservation of editing events during evolution.
Collapse
Affiliation(s)
- Tianyou Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Voss G, Rosenthal JJC. High-level RNA editing diversifies the coleoid cephalopod brain proteome. Brief Funct Genomics 2023; 22:525-532. [PMID: 37981860 DOI: 10.1093/bfgp/elad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.
Collapse
Affiliation(s)
- Gjendine Voss
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| |
Collapse
|
4
|
Ibrahim MI, Ramadan AM, Amer M, Khan TK, Mohamed NG, Said OA. Deciphering the enigma of RNA editing in the ATP1_alpha subunit of ATP synthase in Triticum aestivum. Saudi J Biol Sci 2023; 30:103703. [PMID: 37389198 PMCID: PMC10300253 DOI: 10.1016/j.sjbs.2023.103703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
There is evidence that RNA editing is related to plant cellular stress as well as electron transport organelles, such as mitochondria. The mitochondrial atp1 gene encodes the alpha-subunit of Atp synthase. Control as well as two periods of drought stress treatments were analyzed in the cDNAs generated from the mitochondrial atp1 gene of two cultivars of Triticum aestivum [Giza 168 (G168) and Gemmiza 10 (GM10)]. Following RNA-seq data assembly, atp1 cDNAs from the control (acc. no. OQ129415), 2-hour (acc. no. OQ129416), and 12-hour (acc. no. OQ129417) time points of the T. aestivum cultivar G168 were obtained. Control (acc. no. OQ129419), 2-hour (acc. no. OQ129420), and 12-hour (acc. no. OQ129421) samples all included reconstructed atp1 transcripts from Gemmiza 10. Atp1 transcripts were assembled using the wheat atp1 gene (acc. no. NC_036024). RNA-seq raw data was utilized to identify 11 RNA editing sites in atp1 in the tolerant cultivar Giza168 and 6 in the sensitive cultivar Gemmiza10. The significant difference in RNA editing observed between control and drought stress conditions in sites led to synonymous amino acids. This led to no change in tertiary structure between tolerant and sensitive cultivars. But the change was focused between produced protein and its correspondence sequence on DNA.
Collapse
Affiliation(s)
- Mona I.M. Ibrahim
- College of Biotechnology, Misr University for Science and Technology (MUST), Egypt
| | - Ahmed M. Ramadan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwa Amer
- College of Biotechnology, Misr University for Science and Technology (MUST), Egypt
| | - Thana K. Khan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nermin G. Mohamed
- College of Biotechnology, Misr University for Science and Technology (MUST), Egypt
| | - Osama A. Said
- College of Biotechnology, Misr University for Science and Technology (MUST), Egypt
| |
Collapse
|
5
|
Livnat A, Melamed D. Evolutionary honing in and mutational replacement: how long-term directed mutational responses to specific environmental pressures are possible. Theory Biosci 2023; 142:87-105. [PMID: 36899155 PMCID: PMC10209271 DOI: 10.1007/s12064-023-00387-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023]
Abstract
Recent results have shown that the human malaria-resistant hemoglobin S mutation originates de novo more frequently in the gene and in the population where it is of adaptive significance, namely, in the hemoglobin subunit beta gene compared to the nonresistant but otherwise identical 20A[Formula: see text]T mutation in the hemoglobin subunit delta gene, and in sub-Saharan Africans, who have been subject to intense malarial pressure for many generations, compared to northern Europeans, who have not. This finding raises a fundamental challenge to the traditional notion of accidental mutation. Here, we address this finding with the replacement hypothesis, according to which preexisting genetic interactions can lead directly and mechanistically to mutations that simplify and replace them. Thus, an evolutionary process under selection can gradually hone in on interactions of importance for the currently evolving adaptations, from which large-effect mutations follow that are relevant to these adaptations. We exemplify this hypothesis using multiple types of mutation, including gene fusion mutations, gene duplication mutations, A[Formula: see text]G mutations in RNA-edited sites and transcription-associated mutations, and place it in the broader context of a system-level view of mutation origination called interaction-based evolution. Potential consequences include that similarity of mutation pressures may contribute to parallel evolution in genetically related species, that the evolution of genome organization may be driven by mutational mechanisms, that transposable element movements may also be explained by replacement, and that long-term directed mutational responses to specific environmental pressures are possible. Such mutational phenomena need to be further tested by future studies in natural and artificial settings.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.
| | - Daniel Melamed
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
6
|
Rosenthal JJC, Eisenberg E. Extensive Recoding of the Neural Proteome in Cephalopods by RNA Editing. Annu Rev Anim Biosci 2023; 11:57-75. [PMID: 36790891 DOI: 10.1146/annurev-animal-060322-114534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A→I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.
Collapse
Affiliation(s)
- Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts, USA;
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
8
|
Moldovan MA, Chervontseva ZS, Nogina DS, Gelfand MS. A hierarchy in clusters of cephalopod mRNA editing sites. Sci Rep 2022; 12:3447. [PMID: 35236910 PMCID: PMC8891338 DOI: 10.1038/s41598-022-07460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare. The exception occurs in soft-bodied coleoid cephalopods, where tens of thousands of potentially important A-to-I editing sites have been identified, making coleoids an ideal model for studying of properties and evolution of A-to-I editing sites. Here, we apply several diverse techniques to demonstrate a strong tendency of coleoid RNA editing sites to cluster along the transcript. We show that clustering of editing sites and correlated editing substantially contribute to the transcriptome diversity that arises due to extensive RNA editing. Moreover, we identify three distinct types of editing site clusters, varying in size, and describe RNA structural features and mechanisms likely underlying formation of these clusters. In particular, these observations may explain sequence conservation at large distances around editing sites and the observed dependency of editing on mutations in the vicinity of editing sites.
Collapse
Affiliation(s)
- Mikhail A Moldovan
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| | - Zoe S Chervontseva
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| | - Daria S Nogina
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.,A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| |
Collapse
|
9
|
Melamed D, Nov Y, Malik A, Yakass MB, Bolotin E, Shemer R, Hiadzi EK, Skorecki KL, Livnat A. De novo mutation rates at the single-mutation resolution in a human HBB gene-region associated with adaptation and genetic disease. Genome Res 2022; 32:488-498. [PMID: 35031571 PMCID: PMC8896469 DOI: 10.1101/gr.276103.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Although it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here, we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa, and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the “HbS mutation” when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible.
Collapse
|
10
|
Hao W, Liu G, Wang W, Shen W, Zhao Y, Sun J, Yang Q, Zhang Y, Fan W, Pei S, Chen Z, Xu D, Qin T. RNA Editing and Its Roles in Plant Organelles. Front Genet 2021; 12:757109. [PMID: 34659369 PMCID: PMC8511385 DOI: 10.3389/fgene.2021.757109] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
RNA editing, a vital supplement to the central dogma, yields genetic information on RNA products that are different from their DNA templates. The conversion of C-to-U in mitochondria and plastids is the main kind of RNA editing in plants. Various factors have been demonstrated to be involved in RNA editing. In this minireview, we summarized the factors and mechanisms involved in RNA editing in plant organelles. Recently, the rapid development of deep sequencing has revealed many RNA editing events in plant organelles, and we further reviewed these events identified through deep sequencing data. Numerous studies have shown that RNA editing plays essential roles in diverse processes, such as the biogenesis of chloroplasts and mitochondria, seed development, and stress and hormone responses. Finally, we discussed the functions of RNA editing in plant organelles.
Collapse
Affiliation(s)
- Wei Hao
- College of Medical Technology, Beihua University, Jilin City, China
| | - Guoxiang Liu
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Weipeng Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Wei Shen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Yuping Zhao
- Beijing City River and Lake Management Office, Beijing, China
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Qiuyue Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Yaxin Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Wenjia Fan
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Shuaishuai Pei
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Zhuanqing Chen
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Dongbei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| |
Collapse
|
11
|
Shoshan Y, Liscovitch-Brauer N, Rosenthal JJC, Eisenberg E. Adaptive Proteome Diversification by Nonsynonymous A-to-I RNA Editing in Coleoid Cephalopods. Mol Biol Evol 2021; 38:3775-3788. [PMID: 34022057 PMCID: PMC8382921 DOI: 10.1093/molbev/msab154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.
Collapse
Affiliation(s)
- Yoav Shoshan
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Characterization of metapopulation of Ellobium chinense through Pleistocene expansions and four covariate COI guanine-hotspots linked to G-quadruplex conformation. Sci Rep 2021; 11:12239. [PMID: 34112865 PMCID: PMC8192772 DOI: 10.1038/s41598-021-91675-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
The land snail Ellobium chinense (L. Pfeiffer, 1855) (Eupulmonata, Ellobiida, Ellobiidae), which inhabits the salt marshes along the coastal areas of northwestern Pacific, is an endangered species on the IUCN Red List. Over recent decades, the population size of E. chinense has consistently decreased due to environmental interference caused by natural disasters and human activities. Here, we provide the first assessment of the genetic diversity and population genetic structures of northwestern Pacific E. chinense. The results analyzed with COI and microsatellites revealed that E. chinense population exhibit metapopulation characteristics, retaining under the influence of the Kuroshio warm currents through expansion of the Late-Middle and Late Pleistocene. We also found four phylogenetic groups, regardless of geographical distributions, which were easily distinguishable by four unidirectional and stepwise adenine-to-guanine transitions in COI (sites 207–282–354–420: A–A–A–A, A–A–G–A, G–A–G–A, and G–G–G–G). Additionally, the four COI hotspots were robustly connected with a high degree of covariance between them. We discuss the role of these covariate guanines which link to form four consecutive G-quadruplexes, and their possible beneficial effects under positive selection pressure.
Collapse
|
13
|
Duan Y, Dou S, Porath HT, Huang J, Eisenberg E, Lu J. A-to-I RNA editing in honeybees shows signals of adaptation and convergent evolution. iScience 2021; 24:101983. [PMID: 33458624 PMCID: PMC7797907 DOI: 10.1016/j.isci.2020.101983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Social insects exhibit extensive phenotypic diversities among the genetically similar individuals, suggesting a role for the epigenetic regulations beyond the genome level. The ADAR-mediated adenosine-to-inosine (A-to-I) RNA editing, an evolutionarily conserved mechanism, facilitates adaptive evolution by expanding proteomic diversities. Here, we characterize the A-to-I RNA editome of honeybees (Apis mellifera), identifying 407 high-confidence A-to-I editing sites. Editing is most abundant in the heads and shows signatures for positive selection. Editing behavior differs between foragers and nurses, suggesting a role for editing in caste differentiation. Although only five sites are conserved between bees and flies, an unexpectedly large number of genes exhibit editing in both species, albeit at different locations, including the nonsynonymous auto-editing of Adar. This convergent evolution, where the same target genes independently acquire recoding events in distant diverged clades, together with the signals of adaptation observed in honeybees alone, further supports the notion of recoding being adaptive. Nonsynonymous editing sites in honeybees were under positive selection Differential editing may contribute to the phenotypic diversity between sub-castes Target genes acquire editing in different clades, suggesting convergent evolution
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Moldovan M, Chervontseva Z, Bazykin G, Gelfand MS. Adaptive evolution at mRNA editing sites in soft-bodied cephalopods. PeerJ 2020; 8:e10456. [PMID: 33312772 PMCID: PMC7703385 DOI: 10.7717/peerj.10456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The bulk of variability in mRNA sequence arises due to mutation-change in DNA sequence which is heritable if it occurs in the germline. However, variation in mRNA can also be achieved by post-transcriptional modification including mRNA editing, changes in mRNA nucleotide sequence that mimic the effect of mutations. Such modifications are not inherited directly; however, as the processes affecting them are encoded in the genome, they have a heritable component, and therefore can be shaped by selection. In soft-bodied cephalopods, adenine-to-inosine RNA editing is very frequent, and much of it occurs at nonsynonymous sites, affecting the sequence of the encoded protein. METHODS We study selection regimes at coleoid A-to-I editing sites, estimate the prevalence of positive selection, and analyze interdependencies between the editing level and contextual characteristics of editing site. RESULTS Here, we show that mRNA editing of individual nonsynonymous sites in cephalopods originates in evolution through substitutions at regions adjacent to these sites. As such substitutions mimic the effect of the substitution at the edited site itself, we hypothesize that they are favored by selection if the inosine is selectively advantageous to adenine at the edited position. Consistent with this hypothesis, we show that edited adenines are more frequently substituted with guanine, an informational analog of inosine, in the course of evolution than their unedited counterparts, and for heavily edited adenines, these transitions are favored by positive selection. Our study shows that coleoid editing sites may enhance adaptation, which, together with recent observations on Drosophila and human editing sites, points at a general role of RNA editing in the molecular evolution of metazoans.
Collapse
Affiliation(s)
- Mikhail Moldovan
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Zoe Chervontseva
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Moscow, Russian Federation
| | - Georgii Bazykin
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Moscow, Russian Federation
| | - Mikhail S. Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Moscow, Russian Federation
| |
Collapse
|