1
|
Lira KDL, Barna Fernandes B, Dos Santos Lima LM, Dos Santos Matos Paiva G, Araujo Caldas L, Monteiro J, Lima Nunes Silva AC, Sartorelli P, de Medeiros LS, Augusto Calixto L, Longo Junior LS, de Vasconcellos SP. Coffee husk valorization through choline chloride/lactic acid (1:10) green catalyst extraction for lignin monomers recovery. ENVIRONMENTAL TECHNOLOGY 2025:1-17. [PMID: 40036116 DOI: 10.1080/09593330.2025.2464266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
The processing of coffee consists on the separation of the grains from other parts of the fruit, then roasted and extracted to obtain the beverage that is so appreciated worldwide. Several studies have dedicated efforts to treat the residue from coffee processing, while recovering lignols of industrial interest. Given this scenario, the nutrients in the coffee husk can enhance microbial growth, providing optimal conditions for the microorganisms to produce metabolites that may have medicinal properties. Deep eutectic solvents (DES) are a class of solvents and/or catalysts designed on demand for specific uses, being used to enhance extraction processes of coffee husk. Our present study was successful establishing conditions where the coffee husk enhanced the growth of microorganisms from two Brazilian biomes, the endophytic fungus from Cerrado and the actinomycete, from Atlantic Rainforest in Boraceia, São Paulo. The DES composed by ChCl/LA (1:10) was selected as cosolvent for the extraction, while it also optimized microbial cultivation conditions. Coffee husk was an excellent supplement for culture media, once the fungus FE316 produced Fumiquinazoline A, Tripprostatin B and Pseurotin A, while the actinomycete AC154 produced Trichorozin-IV as metabolites only expressed when in addition to the coffee husk. UHPLC-MS/MS analysis enabled the annotation of lignin monomer compounds, such as alkaloids, phenylpropanoids and terpenoids present in the coffee husk, more specifically, caffeic acid, isochlorogenic acid B, chlorogenic acid and coniferyl aldehyde, underscoring the value of this biomass.
Collapse
Affiliation(s)
- Keith Dayane Leite Lira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bianca Barna Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lidiane Maria Dos Santos Lima
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Lhaís Araujo Caldas
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackson Monteiro
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Clara Lima Nunes Silva
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lívia Soman de Medeiros
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro Augusto Calixto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Sidney Longo Junior
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
3
|
McGrath C. Highlight: Virtual Issue on Host–Pathogen Interactions and Antimicrobial Drug Resistance. Genome Biol Evol 2022. [PMCID: PMC9729932 DOI: 10.1093/gbe/evac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Sun Y, Hong S, Chen H, Yin Y, Wang C. Production of Helvolic Acid in Metarhizium Contributes to Fungal Infection of Insects by Bacteriostatic Inhibition of the Host Cuticular Microbiomes. Microbiol Spectr 2022; 10:e0262022. [PMID: 36047778 PMCID: PMC9602595 DOI: 10.1128/spectrum.02620-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
The nortriterpenoid helvolic acid (HA) has potent antibiotic activities and can be produced by different fungi, yet HA function remains elusive. Here, we report the chemical biology of HA production in the insect pathogen Metarhizium robertsii. After deletion of the core oxidosqualene cyclase gene in Metarhizium, insect survival rates were significantly increased compared to those of insects treated with the wild type and the gene-rescued strain during topical infections but not during injection assays to bypass insect cuticles. Further gnotobiotic infection of axenic Drosophila adults confirmed the HA contribution to fungal infection by inhibiting bacterial competitors in an inoculum-dependent manner. Loss of HA production substantially impaired fungal spore germination and membrane penetration abilities relative to the WT and gene-complemented strains during challenge with different Gram-positive bacteria. Quantitative microbiome analysis revealed that HA production could assist the fungus to suppress the Drosophila cuticular microbiomes by exerting a bacteriostatic rather than bactericidal effect. Our data unveil the chemical ecology of HA and highlight the fact that fungal pathogens have to cope with the host cuticular microbiomes prior to successful infection of hosts. IMPORTANCE Emerging evidence has shown that the plant and animal surface microbiomes can defend hosts against fungal parasite infections. The strategies employed by fungal pathogens to combat the antagonistic inhibition of insect surface bacteria are still elusive. In this study, we found that the potent antibiotic helvolic acid (HA) produced by the insect pathogen Metarhizium robertsii contributes to natural fungal infection of insect hosts. Antibiotic and gnotobiotic infection assays confirmed that HA could facilitate fungal infection of insects by suppression of the host cuticular microbiomes through its bacteriostatic instead of bactericidal activities. The data from this study provide insights into the novel chemical biology of fungal secondary metabolisms.
Collapse
Affiliation(s)
- Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haimin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
5
|
Wu D, Jiang B, Ye CY, Timko MP, Fan L. Horizontal transfer and evolution of the biosynthetic gene cluster for benzoxazinoids in plants. PLANT COMMUNICATIONS 2022; 3:100320. [PMID: 35576160 PMCID: PMC9251436 DOI: 10.1016/j.xplc.2022.100320] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 05/11/2023]
Abstract
Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites that have been identified in multiple grass species and are encoded by the Bx biosynthetic gene cluster (BGC) in maize. Data mining of 41 high-quality grass genomes identified complete Bx clusters (containing genes Bx1-Bx5 and Bx8) in three genera (Zea, Echinochloa, and Dichanthelium) of Panicoideae and partial clusters in Triticeae. The Bx cluster probably originated from gene duplication and chromosomal translocation of native homologs of Bx genes. An ancient Bx cluster that included additional Bx genes (e.g., Bx6) is presumed to have been present in ancestral Panicoideae. The ancient Bx cluster was putatively gained by the Triticeae ancestor via horizontal transfer (HT) from the ancestral Panicoideae and later separated into multiple segments on different chromosomes. Bx6 appears to have been under less constrained selection compared with the Bx cluster during the evolution of Panicoideae, as evidenced by the fact that it was translocated away from the Bx cluster in Zea mays, moved to other chromosomes in Echinochloa, and even lost in Dichanthelium. Further investigations indicate that purifying selection and polyploidization have shaped the evolutionary trajectory of Bx clusters in the grass family. This study provides the first candidate case of HT of a BGC between plants and sheds new light on the evolution of BGCs.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China; Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Bowen Jiang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Longjiang Fan
- Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China; Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
TIAN C, WANG K, ZHANG X, LI G, LOU HX. Old fusidane-type antibiotics for new challenges: Chemistry and biology. Chin J Nat Med 2022; 20:81-101. [DOI: 10.1016/s1875-5364(21)60114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 12/24/2022]
|