1
|
Shen X, Jin J, Zhang G, Yan B, Yu X, Wu H, Yang M, Zhang F. The chromosome-level genome assembly of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae). Sci Data 2024; 11:785. [PMID: 39019956 PMCID: PMC11255235 DOI: 10.1038/s41597-024-03614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Aphidoletes aphidimyza is widely recognized as an effective predator of aphids in agricultural systems. However, there is limited understanding of its predation mechanisms. In this study, we generated a high-quality chromosome level of the A. aphidimyza genome by combining PacBio, Illumina, and Hi-C data. The genome has a size of 192.08 Mb, with a scaffold N50 size of 46.85 Mb, and 99.08% (190.35 Mb) of the assembly is located on four chromosomes. The BUSCO analysis of our assembly indicates a completeness of 97.8% (n = 1,367), including 1,307 (95.6%) single-copy BUSCOs and 30 (2.2%) duplicated BUSCOs. Additionally, we annotated a total of 13,073 protein-coding genes, 18.43% (35.40 Mb) repetitive elements, and 376 non-coding RNAs. Our study is the first time to report the chromosome-scale genome for the species of A. aphidimyza. It provides a valuable genomic resource for the molecular study of A. aphidimyza.
Collapse
Affiliation(s)
- Xiuxian Shen
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqiang Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiaofei Yu
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Huizi Wu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, 564200, China
| | - Maofa Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Exploring the contribution of the salivary gland and midgut to digestion in the swede midge (Contarinia nasturtii) through a genomics-guided approach. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22135. [PMID: 39038196 DOI: 10.1002/arch.22135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The larvae of Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), the swede midge, targets the meristem of brassica crops where they induce the formation of galls and disrupt seed and vegetable production. Previously, we examined the salivary gland transcriptome of newly-hatched first instar larvae as they penetrated the host and initiated gall formation. Here we examine the salivary gland and midgut transcriptome of third instar larvae and provide evidence for cooperative nutrient acquisition beginning with secretion of enzymes and feeding facilitators followed by gastrointestinal digestion. Sucrose, presumably obtained from the phloem, appeared to be a major nutrient source as several α-glucosidases (sucrases, maltases) and β-fructofuranosidases (invertases) were identified. Genes encoding β-fructofuranosidases/invertases were among the most highly expressed in both tissues and represented two distinct gene families that may have originated via horizontal gene transfer from bacteria. The importance of the phloem as a nutrient source is underscored by the expression of genes encoding regucalcin and ARMET (arginine-rich mutated in early stages of tumor) which interfere with calcium signalling and prevent sieve tube occlusion. Lipids, proteins, and starch appear to serve as a secondary nutrient sources. Genes encoding enzymes involved in the detoxification of glucosinolates (myrosinases, arylsulfatases, and glutathione-S-transferases) were expressed indicative of Brassicaceae host specialization. The midgut expressed simple peritrophins and mucins typical of those found in Type II peritrophic matrices, the first such description for a gall midge.
Collapse
Affiliation(s)
- Boyd A Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Martin A Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Characterization of the swede midge, Contarinia nasturtii, first instar larval salivary gland transcriptome. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100064. [PMID: 37575317 PMCID: PMC10415697 DOI: 10.1016/j.cris.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Proteins in saliva of gall-forming insect larvae govern insect-host plant interactions. Contarinia nasturtii, the swede midge, is a pest of brassicaceous vegetables (cabbage, cauliflower, broccoli) and canola. We examined the salivary gland (SG) transcriptome of first instar larvae reared on Brassica napus and catalogued genes encoding secreted proteins that may contribute to the initial stages of larval establishment, the synthesis of plant growth hormones, extra-oral digestion and evasion of host defenses. A significant portion of the secreted proteins with unknown functions were unique to C. nasturtii and were often members of larger gene families organized in genomic clusters with conservation patterns suggesting that they are undergoing selection.
Collapse
Affiliation(s)
- Boyd A. Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| | - Martin A. Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| | - Dwayne D. Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| |
Collapse
|
4
|
Melotto G, Jones MW, Bosley K, Flack N, Frank LE, Jacobson E, Kipp EJ, Nelson S, Ramirez M, Walls C, Koch RL, Lindsey ARI, Faulk C. The genome of the soybean gall midge (Resseliella maxima). G3 (BETHESDA, MD.) 2023; 13:jkad046. [PMID: 36861345 PMCID: PMC10085792 DOI: 10.1093/g3journal/jkad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
The cecidomyiid fly, soybean gall midge, Resseliella maxima Gagné, is a recently discovered insect that feeds on soybean plants in the Midwestern United States. R. maxima larvae feed on soybean stems that may induce plant death and can cause considerable yield losses, making it an important agricultural pest. From three pools of 50 adults each, we used long-read nanopore sequencing to assemble a R. maxima reference genome. The final genome assembly is 206 Mb with 64.88× coverage, consisting of 1,009 contigs with an N50 size of 714 kb. The assembly is high quality with a Benchmarking Universal Single-Copy Ortholog (BUSCO) score of 87.8%. Genome-wide GC level is 31.60%, and DNA methylation was measured at 1.07%. The R. maxima genome is comprised of 21.73% repetitive DNA, which is in line with other cecidomyiids. Protein prediction annotated 14,798 coding genes with 89.9% protein BUSCO score. Mitogenome analysis indicated that R. maxima assembly is a single circular contig of 15,301 bp and shares highest identity to the mitogenome of the Asian rice gall midge, Orseolia oryzae Wood-Mason. The R. maxima genome has one of the highest completeness levels for a cecidomyiid and will provide a resource for research focused on the biology, genetics, and evolution of cecidomyiids, as well as plant-insect interactions in this important agricultural pest.
Collapse
Affiliation(s)
- Gloria Melotto
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Megan W Jones
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn Bosley
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicole Flack
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lexi E Frank
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily Jacobson
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sally Nelson
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mauricio Ramirez
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carrie Walls
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert L Koch
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amelia R I Lindsey
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Melotto G, Jones MW, Bosley K, Flack N, Frank LE, Jacobson E, Kipp EJ, Nelson S, Ramirez M, Walls C, Koch RL, Lindsey ARI, Faulk C. The Genome of the Soybean Gall Midge ( Resseliella maxima ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528044. [PMID: 36798210 PMCID: PMC9934632 DOI: 10.1101/2023.02.10.528044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The cecidomyiid fly, soybean gall midge, Resseliella maxima Gagné, is a recently discovered insect that feeds on soybean plants in the Midwest US. Resseliella maxima larvae feed on soybean stems which may induce plant death and can cause considerable yield losses, making it an important agricultural pest. From three pools of 50 adults each, we used long-read nanopore sequencing to assemble a R. maxima reference genome. The final genome assembly is 206 Mb with 64.88X coverage, consisting of 1009 contigs with an N50 size of 714 kb. The assembly is high quality with a BUSCO score of 87.8%. Genome-wide GC level is 31.60% and DNA methylation was measured at 1.07%. The R. maxima genome is comprised of 21.73% repetitive DNA, which is in line with other cecidomyiids. Protein prediction annotated 14,798 coding genes with 89.9% protein BUSCO score. Mitogenome analysis indicated that R. maxima assembly is a single circular contig of 15,301 bp and shares highest identity to the mitogenome of the Asian rice gall midge, Orseolia oryzae (Wood-Mason). The R. maxima genome has one of the highest completeness levels for a cecidomyiid and will provide a resource for research focused on the biology, genetics, and evolution of cecidomyiids, as well as plant-insect interactions in this important agricultural pest.
Collapse
Affiliation(s)
- Gloria Melotto
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Megan W. Jones
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Kathryn Bosley
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Nicole Flack
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota
| | - Lexi E. Frank
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota
| | - Emily Jacobson
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Evan J. Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota
| | - Sally Nelson
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Mauricio Ramirez
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Carrie Walls
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Robert L. Koch
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Amelia R. I. Lindsey
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota
| |
Collapse
|
6
|
Gong Z, Li T, Miao J, Duan Y, Jiang Y, Li H, Guo P, Wang X, Zhang J, Wu Y. A chromosome-level genome assembly of the orange wheat blossom midge, Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) provides insights into the evolution of a detoxification system. G3 GENES|GENOMES|GENETICS 2022; 12:6617839. [PMID: 35751604 PMCID: PMC9339269 DOI: 10.1093/g3journal/jkac161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/22/2022] [Indexed: 11/14/2022]
Abstract
The orange wheat blossom midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae), an economically important pest, has caused serious yield losses in most wheat-growing areas worldwide in the past half-century. A high-quality chromosome-level genome for S. mosellana was assembled using PacBio long read, Illumina short read, and Hi-C sequencing technologies. The final genome assembly was 180.69 Mb, with contig and scaffold N50 sizes of 998.71 kb and 44.56 Mb, respectively. Hi-C scaffolding reliably anchored 4 pseudochromosomes, accounting for 99.67% of the assembled genome. In total, 12,269 protein-coding genes were predicted, of which 91% were functionally annotated. Phylogenetic analysis indicated that S. mosellana and its close relative, the swede midge Contarinia nasturtii, diverged about 32.7 MYA. The S. mosellana genome showed high chromosomal synteny with the genome of Drosophila melanogaster and Anopheles gambiae. The key gene families involved in the detoxification of plant secondary chemistry were analyzed. The high-quality S. mosellana genome data will provide an invaluable resource for research in a broad range of areas, including the biology, ecology, genetics, and evolution of midges, as well as insect–plant interactions and coevolution.
Collapse
Affiliation(s)
- Zhongjun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Jin Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yun Duan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yueli Jiang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Huiling Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Pei Guo
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Xueqin Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Jing Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| |
Collapse
|
7
|
Verster KI, Tarnopol RL, Akalu SM, Whiteman NK. Horizontal Transfer of Microbial Toxin Genes to Gall Midge Genomes. Genome Biol Evol 2021; 13:6358723. [PMID: 34450656 PMCID: PMC8455502 DOI: 10.1093/gbe/evab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence has underscored the role of horizontal gene transfer (HGT) in animal evolution. Previously, we discovered the horizontal transfer of the gene encoding the eukaryotic genotoxin cytolethal distending toxin B (cdtB) from the pea aphid Acyrthosiphon pisum secondary endosymbiont (APSE) phages to drosophilid and aphid nuclear genomes. Here, we report cdtB in the nuclear genome of the gall-forming "swede midge" Contarinia nasturtii (Diptera: Cecidomyiidae) via HGT. We searched all available gall midge genome sequences for evidence of APSE-to-insect HGT events and found five toxin genes (aip56, cdtB, lysozyme, rhs, and sltxB) transferred horizontally to cecidomyiid nuclear genomes. Surprisingly, phylogenetic analyses of HGT candidates indicated APSE phages were often not the ancestral donor lineage of the toxin gene to cecidomyiids. We used a phylogenetic signal statistic to test a transfer-by-proximity hypothesis for animal HGT, which suggested that microbe-to-insect HGT was more likely between taxa that share environments than those from different environments. Many of the toxins we found in midge genomes target eukaryotic cells, and catalytic residues important for toxin function are conserved in insect copies. This class of horizontally transferred, eukaryotic cell-targeting genes is potentially important in insect adaptation.
Collapse
Affiliation(s)
- Kirsten I Verster
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Rebecca L Tarnopol
- Department of Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Saron M Akalu
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, California, USA,Department of Molecular and Cell Biology, University of California, Berkeley, California, USA,Corresponding author: E-mail:
| |
Collapse
|