1
|
Bautista C, Gagnon-Arsenault I, Utrobina M, Fijarczyk A, Bendixsen DP, Stelkens R, Landry CR. Hybrid adaptation is hampered by Haldane's sieve. Nat Commun 2024; 15:10319. [PMID: 39609385 PMCID: PMC11604976 DOI: 10.1038/s41467-024-54105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Hybrids between species exhibit plastic genomic architectures that could foster or slow down their adaptation. When challenged to evolve in an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates compared to parents. We find that hybrids and their parents converge onto similar molecular mechanisms of adaptation by mutations in pleiotropic transcription factors, but at a different pace. After 100 generations, mutations in these genes tend to be homozygous in the parents but heterozygous in the hybrids. We hypothesize that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain. Using genome editing, we first demonstrate that mutations display incomplete dominance, requiring homozygosity to show full impact and to entirely circumvent Haldane's sieve, which favors the fixation of dominant mutations. Second, tracking mutations in earlier generations confirmed a different rate of LOH in hybrids. Together, these findings show that Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic architecture that can limit the role of hybridization in adaptive evolution.
Collapse
Affiliation(s)
- Carla Bautista
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Mariia Utrobina
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
| |
Collapse
|
2
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Martínez AA, Lang GI. Identifying Targets of Selection in Laboratory Evolution Experiments. J Mol Evol 2023; 91:345-355. [PMID: 36810618 PMCID: PMC11197053 DOI: 10.1007/s00239-023-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is governed by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net result is that replicate populations will traverse similar-but not identical-pathways to higher fitness. This parallelism in evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interference, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. The general principles for identifying the mutations driving adaptation will apply more broadly.
Collapse
Affiliation(s)
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
4
|
Aggeli D, Marad DA, Liu X, Buskirk SW, Levy SF, Lang GI. Overdominant and partially dominant mutations drive clonal adaptation in diploid Saccharomyces cerevisiae. Genetics 2022; 221:6569837. [PMID: 35435209 PMCID: PMC9157133 DOI: 10.1093/genetics/iyac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Identification of adaptive targets in experimental evolution typically relies on extensive replication and genetic reconstruction. An alternative approach is to directly assay all mutations in an evolved clone by generating pools of segregants that contain random combinations of evolved mutations. Here, we apply this method to six Saccharomyces cerevisiae clones isolated from four diploid populations that were clonally evolved for 2,000 generations in rich glucose medium. Each clone contains 17-26 mutations relative to the ancestor. We derived intermediate genotypes between the founder and the evolved clones by bulk mating sporulated cultures of the evolved clones to a barcoded haploid version of the ancestor. We competed the resulting barcoded diploids en masse and quantified fitness in the experimental and alternative environments by barcode sequencing. We estimated average fitness effects of evolved mutations using barcode-based fitness assays and whole genome sequencing for a subset of segregants. In contrast to our previous work with haploid evolved clones, we find that diploids carry fewer beneficial mutations, with modest fitness effects (up to 5.4%) in the environment in which they arose. In agreement with theoretical expectations, reconstruction experiments show that all mutations with a detectable fitness effect manifest some degree of dominance over the ancestral allele, and most are overdominant. Genotypes with lower fitness effects in alternative environments allowed us to identify conditions that drive adaptation in our system.
Collapse
Affiliation(s)
- Dimitra Aggeli
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| | - Daniel A Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| | - Xianan Liu
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA94025, USA
| | - Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA.,Department of Biology, West Chester University, West Chester, PA19383, USA
| | - Sasha F Levy
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA94025, USA
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| |
Collapse
|