1
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
2
|
Hasan AR, Lachapelle J, El-Shawa SA, Potjewyd R, Ford SA, Ness RW. Salt stress alters the spectrum of de novo mutation available to selection during experimental adaptation of Chlamydomonas reinhardtii. Evolution 2022; 76:2450-2463. [PMID: 36036481 DOI: 10.1111/evo.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
The genetic basis of adaptation is driven by both selection and the spectrum of available mutations. Given that the rate of mutation is not uniformly distributed across the genome and varies depending on the environment, understanding the signatures of selection across the genome is aided by first establishing what the expectations of genetic change are from mutation. To determine the interaction between salt stress, selection, and mutation across the genome, we compared mutations observed in a selection experiment for salt tolerance in Chlamydomonas reinhardtii to those observed in mutation accumulation (MA) experiments with and without salt exposure. MA lines evolved under salt stress had a single-nucleotide mutation rate of 1.1 × 10 - 9 $1.1 \times 10^{-9}$ , similar to that of MA lines under standard conditions ( 9.6 × 10 - 10 $9.6 \times 10^{-10}$ ). However, we found that salt stress led to an increased rate of indel mutations, but that many of these mutations were removed under selection. Finally, lines adapted to salt also showed excess clustering of mutations in the genome and the co-expression network, suggesting a role for positive selection in retaining mutations in particular compartments of the genome during the evolution of salt tolerance. Our study shows that characterizing mutation rates and spectra expected under stress helps disentangle the effects of environment and selection during adaptation.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Josianne Lachapelle
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Sara A El-Shawa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Roman Potjewyd
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Scott A Ford
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
3
|
Scheffer H, Coate JE, Ho EKH, Schaack S. Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia. Evol Ecol 2022; 36:829-844. [PMID: 36193163 PMCID: PMC9522699 DOI: 10.1007/s10682-022-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Understanding the short- and long-term consequences of climate change is a major challenge in biology. For aquatic organisms, temperature changes and drought can lead to thermal stress and habitat loss, both of which can ultimately lead to higher mutation rates. Here, we examine the effect of high temperature and mutation accumulation on gene expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. HSPs have been posited to serve as 'mutational capacitors' given their role as molecular chaperones involved in protein folding and degradation, thus buffering against a wide range of cellular stress and destabilization. We assayed changes in HSP expression across 5 genotypes of Daphnia magna, a sentinel species in ecology and environmental biology, with and without acute exposure to thermal stress and accumulated mutations. Across genotypes, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumulation, individually. Both factors simultaneously (lineages with high mutation loads exposed to high heat) increased gene expression ~ 23×-much more than that predicted by an additive model. Our results corroborate suggestions that HSPs can buffer against not only the effects of heat, but also mutations-a combination of factors both likely to increase in a warming world. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10209-1.
Collapse
Affiliation(s)
- Henry Scheffer
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Jeremy E. Coate
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Eddie K. H. Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|