1
|
Hocher A, Warnecke T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol Evol 2024; 16:evae029. [PMID: 38366053 PMCID: PMC10919886 DOI: 10.1093/gbe/evae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tobias Warnecke
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Trinity College, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Wenck BR, Vickerman RL, Burkhart BW, Santangelo TJ. Archaeal histone-based chromatin structures regulate transcription elongation rates. Commun Biol 2024; 7:236. [PMID: 38413771 PMCID: PMC10899632 DOI: 10.1038/s42003-024-05928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Many archaea encode and express histone proteins to compact their genomes. Archaeal and eukaryotic histones share a near-identical fold that permits DNA wrapping through select histone-DNA contacts to generate chromatin-structures that must be traversed by RNA polymerase (RNAP) to generate transcripts. As archaeal histones can spontaneously assemble with a single histone isoform, single-histone chromatin variants provide an idealized platform to detail the impacts of distinct histone-DNA contacts on transcription efficiencies and to detail the role of the conserved cleavage stimulatory factor, Transcription Factor S (TFS), in assisting RNAP through chromatin landscapes. We demonstrate that substitution of histone residues that modify histone-DNA contacts or the three-dimensional chromatin structure result in radically altered transcription elongation rates and pausing patterns. Chromatin-barriers slow and pause RNAP, providing regulatory potential. The modest impacts of TFS on elongation rates through chromatin landscapes is correlated with TFS-dispensability from the archaeon Thermococcus kodakarensis. Our results detail the importance of distinct chromatin structures for archaeal gene expression and provide a unique perspective on the evolution of, and regulatory strategies imposed by, eukaryotic chromatin.
Collapse
Affiliation(s)
- Breanna R Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert L Vickerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Watts EA, Garrett SC, Catchpole RJ, Clark LM, Sanders TJ, Marshall CJ, Wenck BR, Vickerman RL, Santangelo TJ, Fuchs R, Robb B, Olson S, Graveley BR, Terns MP. Histones direct site-specific CRISPR spacer acquisition in model archaeon. Nat Microbiol 2023; 8:1682-1694. [PMID: 37550505 PMCID: PMC10823912 DOI: 10.1038/s41564-023-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
CRISPR-Cas systems provide heritable immunity against viruses and other mobile genetic elements by incorporating fragments of invader DNA into the host CRISPR array as spacers. Integration of new spacers is localized to the 5' end of the array, and in certain Gram-negative Bacteria this polarized localization is accomplished by the integration host factor. For most other Bacteria and Archaea, the mechanism for 5' end localization is unknown. Here we show that archaeal histones play a key role in directing integration of CRISPR spacers. In Pyrococcus furiosus, deletion of either histone A or B impairs integration. In vitro, purified histones are sufficient to direct integration to the 5' end of the CRISPR array. Archaeal histone tetramers and bacterial integration host factor induce similar U-turn bends in bound DNA. These findings indicate a co-evolution of CRISPR arrays with chromosomal DNA binding proteins and a widespread role for binding and bending of DNA to facilitate accurate spacer integration.
Collapse
|
4
|
Stevens KM, Warnecke T. Histone variants in archaea - An undiscovered country. Semin Cell Dev Biol 2023; 135:50-58. [PMID: 35221208 DOI: 10.1016/j.semcdb.2022.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 12/23/2022]
Abstract
Exchanging core histones in the nucleosome for paralogous variants can have important functional ramifications. Many of these variants, and their physiological roles, have been characterized in exquisite detail in model eukaryotes, including humans. In comparison, our knowledge of histone biology in archaea remains rudimentary. This is true in particular for our knowledge of histone variants. Many archaea encode several histone genes that differ in sequence, but do these paralogs make distinct, adaptive contributions to genome organization and regulation in a manner comparable to eukaryotes? Below, we review what we know about histone variants in archaea at the level of structure, regulation, and evolution. In all areas, our knowledge pales when compared to the wealth of insight that has been gathered for eukaryotes. Recent findings, however, provide tantalizing glimpses into a rich and largely undiscovered country that is at times familiar and eukaryote-like and at times strange and uniquely archaeal. We sketch a preliminary roadmap for further exploration of this country; an undertaking that may ultimately shed light not only on chromatin biology in archaea but also on the origin of histone-based chromatin in eukaryotes.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
McGrath C. Highlight: Unraveling the Origins of LUCA and LECA on the Tree of Life. Genome Biol Evol 2022. [PMCID: PMC9168435 DOI: 10.1093/gbe/evac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Talbert PB, Armache KJ, Henikoff S. Viral histones: pickpocket's prize or primordial progenitor? Epigenetics Chromatin 2022; 15:21. [PMID: 35624484 PMCID: PMC9145170 DOI: 10.1186/s13072-022-00454-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The common histones H2A, H2B, H3, and H4 are the characteristic components of eukaryotic nucleosomes, which function to wrap DNA and compact the genome as well as to regulate access to DNA for transcription and replication in all eukaryotes. In the past two decades, histones have also been found to be encoded in some DNA viruses, where their functions and properties are largely unknown, though recently histones from two related viruses have been shown to form nucleosome-like structures in vitro. Viral histones can be highly similar to eukaryotic histones in primary sequence, suggesting they have been recently picked up from eukaryotic hosts, or they can be radically divergent in primary sequence and may occur as conjoined histone doublets, triplets, or quadruplets, suggesting ancient origins prior to the divergence of modern eukaryotes. Here, we review what is known of viral histones and discuss their possible origins and functions. We consider how the viral life cycle may affect their properties and histories, and reflect on the possible roles of viruses in the origin of the nucleus of modern eukaryotic cells.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Ave, New York, NY, 10016, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|