1
|
Shastry V, Berg JJ. Allele ages provide limited information about the strength of negative selection. Genetics 2025; 229:iyae211. [PMID: 39698825 PMCID: PMC11912868 DOI: 10.1093/genetics/iyae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
For many problems in population genetics, it is useful to characterize the distribution of fitness effects (DFE) of de novo mutations among a certain class of sites. A DFE is typically estimated by fitting an observed site frequency spectrum (SFS) to an expected SFS given a hypothesized distribution of selection coefficients and demographic history. The development of tools to infer gene trees from haplotype alignments, along with ancient DNA resources, provides us with additional information about the frequency trajectories of segregating mutations. Here, we ask how useful this additional information is for learning about the DFE, using the joint distribution on allele frequency and age to summarize information about the trajectory. To this end, we introduce an accurate and efficient numerical method for computing the density on the age of a segregating variant found at a given sample frequency, given the strength of selection and an arbitrarily complex population size history. We then use this framework to show that the unconditional age distribution of negatively selected alleles is very closely approximated by reweighting the neutral age distribution in terms of the negatively selected SFS, suggesting that allele ages provide little information about the DFE beyond that already contained in the present day frequency. To confirm this prediction, we extended the standard Poisson random field method to incorporate the joint distribution of frequency and age in estimating selection coefficients, and test its performance using simulations. We find that when the full SFS is observed and the true allele ages are known, including ages in the estimation provides only small increases in the accuracy of estimated selection coefficients. However, if only sites with frequencies above a certain threshold are observed, then the true ages can provide substantial information about the selection coefficients, especially when the selection coefficient is large. When ages are estimated from haplotype data using state-of-the-art tools, uncertainty about the age abrogates most of the additional information in the fully observed SFS case, while the neutral prior assumed in these tools when estimating ages induces a downward bias in the case of the thresholded SFS.
Collapse
Affiliation(s)
- Vivaswat Shastry
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jeremy J Berg
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Horvath R, Minadakis N, Bourgeois Y, Roulin AC. The evolution of transposable elements in Brachypodium distachyon is governed by purifying selection, while neutral and adaptive processes play a minor role. eLife 2024; 12:RP93284. [PMID: 38606833 PMCID: PMC11014726 DOI: 10.7554/elife.93284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRDMontpellierFrance
- University of PortsmouthPortsmouthUnited Kingdom
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|