1
|
Sun S, Li S, Seim I, Du X, Yang X, Liu K, Wei Z, Shao C, Fan G, Liu X. Complete mitogenomes reveal high diversity and recent population dynamics in Antarctic krill. BMC Genomics 2025; 26:419. [PMID: 40301719 PMCID: PMC12039093 DOI: 10.1186/s12864-025-11579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The Antarctic krill (Euphausia superba) is a keystone species in the Southern Ocean ecosystem, influencing food web dynamics and ecosystem functionality. Despite its ecological importance, further exploration is essential to understand their population dynamics. RESULTS In this study, we present the complete mitogenome of the Antarctic krill. The assembly is 18,926 bp, including a notably large 3,952 bp control region (CR). The CR features a satellite repeat spanning 2,289 bp, showcasing the effectiveness of long-read sequencing in resolving complex genomic regions. Additionally, we identified 900 nuclear-mitochondrial segments (NUMTs) totaling 2.79 Mb, shedding light on the dynamic integration of mitochondrial DNA (mtDNA) into the nuclear genomes. By establishing a dataset comprising 80 krill mitogenomes, we unveil substantial mitochondrial diversity, particularly within the ND4 gene. While our analysis reveals no significant differentiation among four geographically distinct groups, we identify at least four maternal genetic clusters. Haplotype network analysis and demographic reconstructions suggest a recent population expansion, likely driven by favorable environmental conditions during the late Pleistocene. Furthermore, our investigation into selection pressures on mitochondrial genes reveals evidence of purifying selection across all 13 protein-coding genes, underscoring the pivotal role of mtDNA conservation in maintaining mitochondrial function under extreme environments. CONCLUSIONS This study provides a repository of Antarctic krill mitogenomes and insights into the population genetics and evolutionary history of this ecologically important species from a mitogenomic perspective, with implications for krill conservation and management in the Southern Ocean.
Collapse
Affiliation(s)
- Shuai Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xiao Du
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Xianwei Yang
- BGI Research, Qingdao, 266555, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhanfei Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
2
|
Xiao Y, Lv YW, Wang ZY, Wu C, He ZH, Hu XS. Selfing Shapes Fixation of a Mutant Allele Under Flux Equilibrium. Genome Biol Evol 2024; 16:evae261. [PMID: 39656771 DOI: 10.1093/gbe/evae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Sexual reproduction with alternative generations in a life cycle is an important feature in eukaryotic evolution. Partial selfing can regulate the efficacy of purging deleterious alleles in the gametophyte phase and the masking effect in heterozygotes in the sporophyte phase. Here, we develop a new theory to analyze how selfing shapes fixation of a mutant allele that is expressed in the gametophyte or the sporophyte phase only or in two phases. In an infinitely large population, we analyze a critical selfing rate beyond which the mutant allele tends to be fixed under equilibrium between irreversible mutation and selection effects. The critical selfing rate varies with genes expressed in alternative phases. In a finite population with partial self-fertilization, we apply Wright's method to calculate the fixation probability of the mutant allele under flux equilibrium among irreversible mutation, selection, and drift effects and compare it with the fixation probability derived from diffusion model under equilibrium between selection and drift effects. Selfing facilitates fixation of the deleterious allele expressed in the gametophyte phase only but impedes fixation of the deleterious allele expressed in the sporophyte phase only. Selfing facilitates or impedes fixation of the deleterious allele expressed in two phases, depending upon how phase variation in selection occurs in a life cycle. The overall results help to understand the adaptive strategy that sexual reproductive plant species evolve through the joint effects of partial selfing and alternative generations in a life cycle.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Lv
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Yun Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Chao Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Han He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Sheng Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Su Y, Fang J, Zeeshan Ul Haq M, Yang W, Yu J, Yang D, Liu Y, Wu Y. Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut ( Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2077. [PMID: 39124195 PMCID: PMC11313903 DOI: 10.3390/plants13152077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Casparian strip membrane domain proteins (CASPs), regulating the formation of Casparian strips in plants, serve crucial functions in facilitating plant growth, development, and resilience to abiotic stress. However, little research has focused on the characteristics and functions of AhCASPs in cultivated peanuts. In this study, the genome-wide identification and expression analysis of the AhCASPs gene family was performed using bioinformatics and transcriptome data. Results showed that a total of 80 AhCASPs members on 20 chromosomes were identified and divided into three subclusters, which mainly localized to the cell membrane. Ka/Ks analysis revealed that most of the genes underwent purifying selection. Analysis of cis elements suggested the possible involvement of AhCASPs in hormonal and stress responses, including GA, MeJA, IAA, ABA, drought, and low temperature. Moreover, 20 different miRNAs for 37 different AhCASPs genes were identified by the psRNATarget service. Likewise, transcriptional analysis revealed key AhCASPs responding to various stresses, hormonal processing, and tissue types, including 33 genes in low temperature and drought stress and 41 genes in tissue-specific expression. These results provide an important theoretical basis for the functions of AhCASPs in growth, development, and multiple stress resistance in cultivated peanuts.
Collapse
Affiliation(s)
- Yating Su
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jieyun Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Wanli Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
4
|
Yang X, Li X, Wang X, Chen C, Wu D, Cheng Y, Wang Y, Sha L, Kang H, Liu S, Fan X, Chen Y, Zhou Y, Zhang H. Identification and Characterization of LBD Gene Family in Pseudoroegneria libanotica Reveals Functions of PseLBD1 and PseLBD12 in Response to Abiotic Stress. Biochem Genet 2024:10.1007/s10528-024-10859-6. [PMID: 38850375 DOI: 10.1007/s10528-024-10859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.
Collapse
Affiliation(s)
- Xunzhe Yang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- UWA School of Agriculture and Environment, and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Xiang Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chen Chen
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yonghong Zhou
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Zhou T, Wu PJ, Chen JF, Du XQ, Feng YN, Hua YP. Pectin demethylation-mediated cell wall Na + retention positively regulates salt stress tolerance in oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:54. [PMID: 38381205 DOI: 10.1007/s00122-024-04560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Xiao-Qian Du
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Li X, Wang X, Ma X, Cai W, Liu Y, Song W, Fu B, Li S. Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1285488. [PMID: 38023912 PMCID: PMC10655083 DOI: 10.3389/fpls.2023.1285488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Alfalfa is an excellent leguminous forage crop that is widely cultivated worldwide, but its yield and quality are often affected by drought and soil salinization. Hyperosmolality-gated calcium-permeable channel (OSCA) proteins are hyperosmotic calcium ion (Ca2+) receptors that play an essential role in regulating plant growth, development, and abiotic stress responses. However, no systematic analysis of the OSCA gene family has been conducted in alfalfa. In this study, a total of 14 OSCA genes were identified from the alfalfa genome and classified into three groups based on their sequence composition and phylogenetic relationships. Gene structure, conserved motifs and functional domain prediction showed that all MsOSCA genes had the same functional domain DUF221. Cis-acting element analysis showed that MsOSCA genes had many cis-regulatory elements in response to abiotic or biotic stresses and hormones. Tissue expression pattern analysis demonstrated that the MsOSCA genes had tissue-specific expression; for example, MsOSCA12 was only expressed in roots and leaves but not in stem and petiole tissues. Furthermore, RT-qPCR results indicated that the expression of MsOSCA genes was induced by abiotic stress (drought and salt) and hormones (JA, SA, and ABA). In particular, the expression levels of MsOSCA3, MsOSCA5, MsOSCA12 and MsOSCA13 were significantly increased under drought and salt stress, and MsOSCA7, MsOSCA10, MsOSCA12 and MsOSCA13 genes exhibited significant upregulation under plant hormone treatments, indicating that these genes play a positive role in drought, salt and hormone responses. Subcellular localization results showed that the MsOSCA3 protein was localized on the plasma membrane. This study provides a basis for understanding the biological information and further functional analysis of the MsOSCA gene family and provides candidate genes for stress resistance breeding in alfalfa.
Collapse
Affiliation(s)
- Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xiaotong Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xuxia Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wenqi Cai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co., Ltd, Hohhot, China
| | - Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| |
Collapse
|