1
|
Abood S, Oota H. Human dispersal into East Eurasia: ancient genome insights and the need for research on physiological adaptations. J Physiol Anthropol 2025; 44:5. [PMID: 39953642 PMCID: PMC11829451 DOI: 10.1186/s40101-024-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/25/2024] [Indexed: 02/17/2025] Open
Abstract
Humans have long pondered their genesis. The answer to the great question of where Homo sapiens come from has evolved in conjunction with biotechnologies that have allowed us to more brightly illuminate our distant past. The "Multiregional Evolution" model was once the hegemonic theory of Homo sapiens origins, but in the last 30 years, it has been supplanted by the "Out of Africa" model. Here, we review the major findings that have resulted in this paradigmatic shift. These include hominin brain expansion, classical insight from the mitochondrial genome (mtDNA) regarding the timing of the divergence point between Africans and non-Africans, and next-generation sequencing (NGS) of the Neanderthal and Denisovan genomes. These findings largely bolstered the "Out of Africa" model, although they also revealed a small degree of introgression of the Neanderthal and Denisovan genomes into those of non-African Homo sapiens. We also review paleogenomic studies for which migration route, north or south, early migrants to East Eurasia most likely traversed. Whichever route was taken, the migrants moved to higher latitudes, which necessitated adaptation for lower light conditions, colder clines, and pro-adipogenic mechanisms to counteract food scarcity. Further genetic and epigenetic investigations of these physiological adaptations constitute an integral aspect of the story of human origins and human migration to East Asia.
Collapse
Affiliation(s)
- Steven Abood
- Department of Biological Sciences, Graduate School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Biscontin A, Russo A, Marnetto D, Pagani L, Costa R, Montagnese S. Validation and TaqMan Conversion of a Molecular Chronotype Assessment Approach. J Biol Rhythms 2025; 40:19-26. [PMID: 39604164 DOI: 10.1177/07487304241298404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The present study aimed to develop a TaqMan genotyping card for molecular chronotype assessment based on a predictive panel of 35 previously identified genetic variants. A reliable TaqMan assay was successfully developed for 33 out of the 35 chronotype-predictive variants. The resulting TaqMan genotyping card was utilized to genetically characterize 196 new individuals (in addition to the previously studied 96) and the Morningness-Eveningness Questionnaire was utilized for their phenotypical chronotype assessment. The predictive panel performance was validated on (a) a group of morning and evening individuals (logistic regression model), (b) a representative sample of the original study population also including intermediate chronotypes (linear regression model) and, (c) 25,986 individuals from the Estonian Biobank, for whom Munich Chronotype Questionnaire scores were available. The validation of the morningness-eveningness logistic regression model on 25 morning and 21 evening types resulted in a predictive value of 72%, confirming the reliability of the predictive panel and the success of its conversion into a TaqMan genotyping card. By contrast, the inclusion of intermediate individuals in the model led to a significant decrease in predictive performance (45% on 100 individuals [25 morning, 54 intermediate, and 21 evening]), with intermediate types being the most affected. No significant associations were observed between the genotype panel and chronotype in the Estonian Biobank sample. In conclusion, our genotyping card might represent a promising molecular chronotyping tool for the Italian population. Its performance in other populations is worthy of further study.
Collapse
Affiliation(s)
- Alberto Biscontin
- Department of Medicine, University of Padova, Padova, Italy
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Marnetto
- Department of Neurosciences "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rodolfo Costa
- Institute of Neuroscience, National Research Council, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
3
|
Ferrando-Bernal M, Brand CM, Capra JA. Inferring human phenotypes using ancient DNA: from molecules to populations. Curr Opin Genet Dev 2025; 90:102283. [PMID: 39612613 DOI: 10.1016/j.gde.2024.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
The increasing availability of ancient DNA (aDNA) from human groups across space and time has yielded deep insights into the movements of our species. However, given the challenges of mapping from genotype to phenotype, aDNA has revealed less about the phenotypes of ancient individuals. In this review, we highlight recent advances in inferring ancient phenotypes - from the molecular to population scale - with a focus on applications enabled by new machine learning approaches. The genetic architecture of complex traits across human groups suggests that the prediction of individual-level complex traits, like behavior or disease risk, is often challenging across the relevant evolutionary distances. Thus, we propose an approach that integrates predictions of molecular phenotypes, whose mechanisms are more conserved, with nongenetic data.
Collapse
Affiliation(s)
- Manuel Ferrando-Bernal
- Bakar Computational Health Science Institute, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Colin M Brand
- Bakar Computational Health Science Institute, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - John A Capra
- Bakar Computational Health Science Institute, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Tagore D, Akey JM. Archaic hominin admixture and its consequences for modern humans. Curr Opin Genet Dev 2025; 90:102280. [PMID: 39577372 PMCID: PMC11770379 DOI: 10.1016/j.gde.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%-5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history. Here, we review recent insights into admixture between modern and archaic humans, emphasizing methodological innovations and the functional and phenotypic effects Neanderthal and Denisovan sequences have in contemporary individuals.
Collapse
Affiliation(s)
- Debashree Tagore
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA. https://twitter.com/@TagoreDebashree
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton 08540, USA.
| |
Collapse
|
5
|
Borisenkov M, Gubin D, Sergey K. On the issue of adaptive fitness of chronotypes in high latitudes. BIOL RHYTHM RES 2024; 55:354-358. [DOI: 10.1080/09291016.2024.2363742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 10/07/2024]
Affiliation(s)
- Mikhail Borisenkov
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, Tyumen, Russia
- Department of Biology, Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Kolomeichuk Sergey
- Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Tyumen State Medical University, Tyumen, Russia
| |
Collapse
|