1
|
Datta S, Patel M, Kashyap S, Patel D, Singh U. Chimeric chromosome landscapes of human somatic cell cultures show dependence on stress and regulation of genomic repeats by CGGBP1. Oncotarget 2022; 13:136-155. [PMID: 35070079 PMCID: PMC8765472 DOI: 10.18632/oncotarget.28174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Genomes of somatic cells in culture are prone to spontaneous mutations due to errors in replication and DNA repair. Some of these errors, such as chromosomal fusions, are not rectifiable and subject to selection or elimination in growing cultures. Somatic cell cultures are thus expected to generate background levels of potentially stable chromosomal chimeras. A description of the landscape of such spontaneously generated chromosomal chimeras in cultured cells will help understand the factors affecting somatic mosaicism. Here we show that short homology-associated non-homologous chromosomal chimeras occur in normal human fibroblasts and HEK293T cells at genomic repeats. The occurrence of chromosomal chimeras is enhanced by heat stress and depletion of a repeat regulatory protein CGGBP1. We also present evidence of homologous chromosomal chimeras between allelic copies in repeat-rich DNA obtained by methylcytosine immunoprecipitation. The formation of homologous chromosomal chimeras at Alu and L1 repeats increases upon depletion of CGGBP1. Our data are derived from de novo sequencing from three different cell lines under different experimental conditions and our chromosomal chimera detection pipeline is applicable to long as well as short read sequencing platforms. These findings present significant information about the generation, sensitivity and regulation of somatic mosaicism in human cell cultures.
Collapse
Affiliation(s)
- Subhamoy Datta
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manthan Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | - Sukesh Kashyap
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Current address: Research Programs Unit, Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Biomedicum, Helsinki 00290, Finland
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
2
|
Hulke ML, Massey DJ, Koren A. Genomic methods for measuring DNA replication dynamics. Chromosome Res 2020; 28:49-67. [PMID: 31848781 PMCID: PMC7131883 DOI: 10.1007/s10577-019-09624-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Genomic DNA replicates according to a defined temporal program in which early-replicating loci are associated with open chromatin, higher gene density, and increased gene expression levels, while late-replicating loci tend to be heterochromatic and show higher rates of genomic instability. The ability to measure DNA replication dynamics at genome scale has proven crucial for understanding the mechanisms and cellular consequences of DNA replication timing. Several methods, such as quantification of nucleotide analog incorporation and DNA copy number analyses, can accurately reconstruct the genomic replication timing profiles of various species and cell types. More recent developments have expanded the DNA replication genomic toolkit to assays that directly measure the activity of replication origins, while single-cell replication timing assays are beginning to reveal a new level of replication timing regulation. The combination of these methods, applied on a genomic scale and in multiple biological systems, promises to resolve many open questions and lead to a holistic understanding of how eukaryotic cells replicate their genomes accurately and efficiently.
Collapse
Affiliation(s)
- Michelle L Hulke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Scala G, Affinito O, Miele G, Monticelli A, Cocozza S. Evidence for evolutionary and nonevolutionary forces shaping the distribution of human genetic variants near transcription start sites. PLoS One 2014; 9:e114432. [PMID: 25474578 PMCID: PMC4256220 DOI: 10.1371/journal.pone.0114432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/09/2014] [Indexed: 11/19/2022] Open
Abstract
The regions surrounding transcription start sites (TSSs) of genes play a critical role in the regulation of gene expression. At the same time, current evidence indicates that these regions are particularly stressed by transcription-related mutagenic phenomena. In this work we performed a genome-wide analysis of the distribution of single nucleotide polymorphisms (SNPs) inside the 10 kb region flanking human TSSs by dividing SNPs into four classes according to their frequency (rare, two intermediate classes, and common). We found that, in this 10 kb region, the distribution of variants depends on their frequency and on their localization relative to the TSS. We found that the distribution of variants is generally different for TSSs located inside or outside of CpG islands. We found a significant relationship between the distribution of rare variants and nucleosome occupancy scores. Furthermore, our analysis suggests that evolutionary (purifying selection) and nonevolutionary (biased gene conversion) forces both play a role in determining the relative SNP frequency around TSSs. Finally, we analyzed the potential pathogenicity of each class of variant using the Combined Annotation Dependent Depletion score. In conclusion, this study provides a novel and detailed view of the distribution of genomic variants around TSSs, providing insight into the forces that instigate and maintain variability in such critical regions.
Collapse
Affiliation(s)
- Giovanni Scala
- Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy
- * E-mail:
| | - Ornella Affinito
- Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS), CNR, Naples, Italy
| | - Gennaro Miele
- Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy
| | - Antonella Monticelli
- Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS), CNR, Naples, Italy
| | - Sergio Cocozza
- Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
4
|
Bell CG, Wilson GA, Beck S. Human-specific CpG 'beacons' identify human-specific prefrontal cortex H3K4me3 chromatin peaks. Epigenomics 2014; 6:21-31. [PMID: 24579944 DOI: 10.2217/epi.13.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Targeted recruitment of chromatin-modifying enzymes to clusters of CpG dinucleotides contributes toward the formation of accessible chromatin. By interprimate comparison we previously identified the set of nonpolymorphic human-specific CpGs (CpG 'beacons') and revealed that these loci were enriched for human disease traits. Due to their human-specific CpG density change, extreme CpG 'beacon' clusters (≥20 CpG beacons/kb) were predicted to identify permissive chromatin peaks within the human genome. AIM We set out to explore these sequence-defined regions for evidence of an active chromatin signature. RESULTS Using available comparative primate epigenomic data from neurons of the prefrontal cortex, we show that these CpG 'beacon' clusters are indeed enriched for being human-specific H3K4me3 peaks (χ(2): p < 2.2 × 10(-16)) and thus predictive of permissive chromatin states. These sequence regions had a higher predictive value than previous selective analyses. We also show that both human-specific H3K4me3 and CpG 'beacon' clusters are increased within current and ancestral telomeric regions, supporting an association with recombination, which is higher towards the distal ends of chromosomes. CONCLUSION Therefore, CpG-focused comparative sequence analysis can precisely pinpoint chromatin structures that contribute to the human-specific phenotype and further supports an integrated approach in genomic and epigenomic studies.
Collapse
Affiliation(s)
- Christopher G Bell
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | | | | |
Collapse
|
5
|
Provata A, Nicolis C, Nicolis G. Complexity measures for the evolutionary categorization of organisms. Comput Biol Chem 2014; 53 Pt A:5-14. [PMID: 25216557 DOI: 10.1016/j.compbiolchem.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 01/17/2023]
Abstract
Complexity measures are used to compare the genomic characteristics of five organisms belonging to distinct classes spanning the evolutionary tree: higher eukaryotes, amoebae, unicellular eukaryotes and bacteria. The comparisons are undertaken using the full four-letter alphabet and the coarse grained two-letter alphabets AG-CT and AT-CG. We show that the conditional probability matrix for the four-letter and AT-CG alphabet is markedly asymmetric in eukaryotes while it is nearly symmetric in bacterial genomes. Spatial asymmetry is revealed in the four-letter alphabet, signifying that the probability fluxes are nonvanishing and thus the reading sense of a sequence is irreversible for all organisms. Calculations of the block entropy and excess entropy demonstrate that the human genome accommodates better all possible block configurations, especially for long blocks. With respect to point-to-point details and to spatial arrangement of blocks the exit distance distributions from a particular letter demonstrate long distance characteristics in the eukaryotic sequences for all three alphabets, while the bacterial (prokaryotic) genomes deviate indicating short range characteristics. Overall, the conditional probability, the fluxes, the block entropy content and the exit distance distributions can be used as markers, discriminating between eukaryotic and prokaryotic DNA, allowing in many cases to discern details related to finer classes. In all cases the reduction from four letters to two masks some important statistical and spatial properties, with the AT-CG alphabet having higher ability of discrimination than the AG-CT one. In particular, the AT-CG alphabet reduction accentuates the CpG related properties (conditional probabilities w32, long ranged exit distance distribution for A and T nucleotides), but masks sequence asymmetry and irreversibility in all examined organisms.
Collapse
Affiliation(s)
- A Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - C Nicolis
- Institut Royal Météorogique de Belgique, 3 Avenue Circulaire, 1180 Bruxelles, Belgium.
| | - G Nicolis
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium.
| |
Collapse
|
6
|
Provata A, Nicolis C, Nicolis G. DNA viewed as an out-of-equilibrium structure. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052105. [PMID: 25353737 DOI: 10.1103/physreve.89.052105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Indexed: 05/02/2023]
Abstract
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
Collapse
Affiliation(s)
- A Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15310 Athens, Greece and Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, CP. 231, 1050 Bruxelles, Belgium
| | - C Nicolis
- Institut Royal Météorologique de Belgique, 3 Avenue Circulaire, 1180 Bruxelles, Belgium
| | - G Nicolis
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, CP. 231, 1050 Bruxelles, Belgium
| |
Collapse
|
7
|
GC skew at the 5' and 3' ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 2013; 23:1590-600. [PMID: 23868195 PMCID: PMC3787257 DOI: 10.1101/gr.158436.113] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can distinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci are enriched in distinct chromosomal territories reflecting the intrinsic strength of their protection against DNA methylation. Interestingly, we show that strong CGI promoters are depleted from the X chromosome while weak CGIs are enriched, a property consistent with the acquisition of DNA methylation during dosage compensation. Furthermore, we identify a third class of CGI promoters based on its unique GC skew profile and show that this gene set is enriched for Polycomb group targets. Lastly, we show that nearly 2000 genes harbor GC skew at their 3′ ends and that these genes are preferentially located in gene-dense regions and tend to be closely arranged. Genomic profiling of R-loops accordingly showed that a large proportion of genes with terminal GC skew form R-loops at their 3′ ends, consistent with a role for these structures in permitting efficient transcription termination. Altogether, we show that GC skew and R-loop formation offer significant insights into the epigenetic regulation, genomic organization, and function of human genes.
Collapse
|
8
|
Bell CG, Wilson GA, Butcher LM, Roos C, Walter L, Beck S. Human-specific CpG "beacons" identify loci associated with human-specific traits and disease. Epigenetics 2012; 7:1188-99. [PMID: 22968434 PMCID: PMC3469460 DOI: 10.4161/epi.22127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed “CpG beacons”) as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10−3) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10−3). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs.
Collapse
Affiliation(s)
- Christopher G Bell
- Medical Genomics, UCL Cancer Institute, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Arakawa K, Tomita M. Measures of compositional strand bias related to replication machinery and its applications. Curr Genomics 2012; 13:4-15. [PMID: 22942671 PMCID: PMC3269016 DOI: 10.2174/138920212799034749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/10/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
The compositional asymmetry of complementary bases in nucleotide sequences implies the existence of a mutational or selectional bias in the two strands of the DNA duplex, which is commonly shaped by strand-specific mechanisms in transcription or replication. Such strand bias in genomes, frequently visualized by GC skew graphs, is used for the computational prediction of transcription start sites and replication origins, as well as for comparative evolutionary genomics studies. The use of measures of compositional strand bias in order to quantify the degree of strand asymmetry is crucial, as it is the basis for determining the applicability of compositional analysis and comparing the strength of the mutational bias in different biological machineries in various species. Here, we review the measures of strand bias that have been proposed to date, including the ∆GC skew, the B1 index, the predictability score of linear discriminant analysis for gene orientation, the signal-to-noise ratio of the oligonucleotide bias, and the GC skew index. These measures have been predominantly designed for and applied to the analysis of replication-related mutational processes in prokaryotes, but we also give research examples in eukaryotes.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
| | | |
Collapse
|
10
|
Baker A, Julienne H, Chen CL, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Linking the DNA strand asymmetry to the spatio-temporal replication program. I. About the role of the replication fork polarity in genome evolution. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:92. [PMID: 23001787 DOI: 10.1140/epje/i2012-12092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Two key cellular processes, namely transcription and replication, require the opening of the DNA double helix and act differently on the two DNA strands, generating different mutational patterns (mutational asymmetry) that may result, after long evolutionary time, in different nucleotide compositions on the two DNA strands (compositional asymmetry). We elaborate on the simplest model of neutral substitution rates that takes into account the strand asymmetries generated by the transcription and replication processes. Using perturbation theory, we then solve the time evolution of the DNA composition under strand-asymmetric substitution rates. In our minimal model, the compositional and substitutional asymmetries are predicted to decompose into a transcription- and a replication-associated components. The transcription-associated asymmetry increases in magnitude with transcription rate and changes sign with gene orientation while the replication-associated asymmetry is proportional to the replication fork polarity. These results are confirmed experimentally in the human genome, using substitution rates obtained by aligning the human and chimpanzee genomes using macaca and orangutan as outgroups, and replication fork polarity determined in the HeLa cell line as estimated from the derivative of the mean replication timing. When further investigating the dynamics of compositional skew evolution, we show that it is not at equilibrium yet and that its evolution is an extremely slow process with characteristic time scales of several hundred Myrs.
Collapse
Affiliation(s)
- A Baker
- Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Koester B, Rea TJ, Templeton AR, Szalay AS, Sing CF. Long-range autocorrelations of CpG islands in the human genome. PLoS One 2012; 7:e29889. [PMID: 22253817 PMCID: PMC3256200 DOI: 10.1371/journal.pone.0029889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 12/07/2011] [Indexed: 01/24/2023] Open
Abstract
In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes.
Collapse
Affiliation(s)
- Benjamin Koester
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas J. Rea
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alan R. Templeton
- Department of Biology, Washington University, St Louis, Missouri, United States of America
| | - Alexander S. Szalay
- Department of Physics and Astronomy, Center for Astrophysical Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Charles F. Sing
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Martin MM, Ryan M, Kim R, Zakas AL, Fu H, Lin CM, Reinhold WC, Davis SR, Bilke S, Liu H, Doroshow JH, Reimers MA, Valenzuela MS, Pommier Y, Meltzer PS, Aladjem MI. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res 2011; 21:1822-32. [PMID: 21813623 DOI: 10.1101/gr.124644.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This report investigates the mechanisms by which mammalian cells coordinate DNA replication with transcription and chromatin assembly. In yeast, DNA replication initiates within nucleosome-free regions, but studies in mammalian cells have not revealed a similar relationship. Here, we have used genome-wide massively parallel sequencing to map replication initiation events, thereby creating a database of all replication initiation sites within nonrepetitive DNA in two human cell lines. Mining this database revealed that genomic regions transcribed at moderate levels were generally associated with high replication initiation frequency. In genomic regions with high rates of transcription, very few replication initiation events were detected. High-resolution mapping of replication initiation sites showed that replication initiation events were absent from transcription start sites but were highly enriched in adjacent, downstream sequences. Methylation of CpG sequences strongly affected the location of replication initiation events, whereas histone modifications had minimal effects. These observations suggest that high levels of transcription interfere with formation of pre-replication protein complexes. Data presented here identify replication initiation sites throughout the genome, providing a foundation for further analyses of DNA-replication dynamics and cell-cycle progression.
Collapse
Affiliation(s)
- Melvenia M Martin
- Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen CL, Duquenne L, Audit B, Guilbaud G, Rappailles A, Baker A, Huvet M, d'Aubenton-Carafa Y, Hyrien O, Arneodo A, Thermes C. Replication-associated mutational asymmetry in the human genome. Mol Biol Evol 2011; 28:2327-37. [PMID: 21368316 DOI: 10.1093/molbev/msr056] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.
Collapse
Affiliation(s)
- Chun-Long Chen
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density, crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A → G versus T → C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence for a strand bias in allele frequency data, implying that the substitution asymmetry reflects a mutation rather than a fixation bias. The density of transposable elements is positively correlated with germline expression, suggesting that such elements preferentially insert into regions that are actively transcribed. For each of the features examined, our analyses favor a nonselective explanation for the observed trends and point to the role of germline gene expression in shaping the mammalian genome.
Collapse
Affiliation(s)
- Graham McVicker
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
15
|
Polak P, Querfurth R, Arndt PF. The evolution of transcription-associated biases of mutations across vertebrates. BMC Evol Biol 2010; 10:187. [PMID: 20565875 PMCID: PMC2927911 DOI: 10.1186/1471-2148-10-187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 06/18/2010] [Indexed: 02/03/2024] Open
Abstract
Background The interplay between transcription and mutational processes can lead to particular mutation patterns in transcribed regions of the genome. Transcription introduces several biases in mutational patterns; in particular it invokes strand specific mutations. In order to understand the forces that have shaped transcripts during evolution, one has to study mutation patterns associated with transcription across animals. Results Using multiple alignments of related species we estimated the regional single-nucleotide substitution patterns along genes in four vertebrate taxa: primates, rodents, laurasiatheria and bony fishes. Our analysis is focused on intronic and intergenic regions and reveals differences in the patterns of substitution asymmetries between mammals and fishes. In mammals, the levels of asymmetries are stronger for genes starting within CpG islands than in genes lacking this property. In contrast to all other species analyzed, we found a mutational pressure in dog and stickleback, promoting an increase of GC-contents in the proximity to transcriptional start sites. Conclusions We propose that the asymmetric patterns in transcribed regions are results of transcription associated mutagenic processes and transcription coupled repair, which both seem to evolve in a taxon related manner. We also discuss alternative mechanisms that can generate strand biases and involves error prone DNA polymerases and reverse transcription. A localized increase of the GC content near the transcription start site is a signature of biased gene conversion (BGC) that occurs during recombination and heteroduplex formation. Since dog and stickleback are known to be subject to rapid adaptations due to population bottlenecks and breeding, we further hypothesize that an increase in recombination rates near gene starts has been part of an adaptive process.
Collapse
Affiliation(s)
- Paz Polak
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | |
Collapse
|