1
|
Helia O, Matúšová B, Havlová K, Hýsková A, Lyčka M, Beying N, Puchta H, Fajkus J, Fojtová M. Chromosome engineering points to the cis-acting mechanism of chromosome arm-specific telomere length setting and robustness of plant phenotype, chromatin structure and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70024. [PMID: 39962352 PMCID: PMC11832813 DOI: 10.1111/tpj.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
The study investigates the impact of targeted chromosome engineering on telomere dynamics, chromatin structure, gene expression, and phenotypic stability in Arabidopsis thaliana. Using precise CRISPR/Cas-based engineering, reciprocal translocations of chromosome arms were introduced between non-homologous chromosomes. The subsequent homozygous generations of plants were assessed for phenotype, transcriptomic changes and chromatin modifications near translocation breakpoints, and telomere length maintenance. Phenotypically, translocated lines were indistinguishable from wild-type plants, as confirmed through morphological assessments and principal component analysis. Gene expression profiling detected minimal differential expression, with affected genes dispersed across the genome, indicating negligible transcriptional impact. Similarly, ChIPseq analysis showed no substantial alterations in the enrichment of key histone marks (H3K27me3, H3K4me1, H3K56ac) near junction sites or across the genome. Finally, bulk and arm-specific telomere lengths remained stable across multiple generations, except for minor variations in one translocation line. These findings highlight the remarkable genomic and phenotypic robustness of A. thaliana despite large-scale chromosomal rearrangements. The study offers insights into the cis-acting mechanisms underlying chromosome arm-specific telomere length setting and establishes the feasibility of chromosome engineering for studies of plant genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Barbora Matúšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Kateřina Havlová
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Anna Hýsková
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
| | - Natalja Beying
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| |
Collapse
|
2
|
Tagirdzhanova G, Scharnagl K, Yan X, Talbot NJ. Genomic analysis of Coccomyxa viridis, a common low-abundance alga associated with lichen symbioses. Sci Rep 2023; 13:21285. [PMID: 38042930 PMCID: PMC10693582 DOI: 10.1038/s41598-023-48637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
Lichen symbiosis is centered around a relationship between a fungus and a photosynthetic microbe, usually a green alga. In addition to their main photosynthetic partner (the photobiont), lichen symbioses can contain additional algae present in low abundance. The biology of these algae and the way they interact with the rest of lichen symbionts remains largely unknown. Here we present the first genome sequence of a non-photobiont lichen-associated alga. Coccomyxa viridis was unexpectedly found in 12% of publicly available lichen metagenomes. With few exceptions, members of the Coccomyxa viridis clade occur in lichens as non-photobionts, potentially growing in thalli endophytically. The 45.7 Mbp genome of C. viridis was assembled into 18 near chromosome-level contigs, making it one of the most contiguous genomic assemblies for any lichen-associated algae. Comparing the C. viridis genome to its close relatives revealed the presence of traits associated with the lichen lifestyle. The genome of C. viridis provides a new resource for exploring the evolution of the lichen symbiosis, and how symbiotic lifestyles shaped evolution in green algae.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- University & Jepson Herbaria, University of California Berkeley, Valley Life Sciences Building, Berkeley, CA, 94720, USA
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
3
|
Lim J, Kim W, Kim J, Lee J. Telomeric repeat evolution in the phylum Nematoda revealed by high-quality genome assemblies and subtelomere structures. Genome Res 2023; 33:1947-1957. [PMID: 37918961 PMCID: PMC10760449 DOI: 10.1101/gr.278124.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Telomeres are composed of tandem arrays of telomeric-repeat motifs (TRMs) and telomere-binding proteins (TBPs), which are responsible for ensuring end-protection and end-replication of chromosomes. TRMs are highly conserved owing to the sequence specificity of TBPs, although significant alterations in TRM have been observed in several taxa, except Nematoda. We used public whole-genome sequencing data sets to analyze putative TRMs of 100 nematode species and determined that three distinct branches included specific novel TRMs, suggesting that evolutionary alterations in TRMs occurred in Nematoda. We focused on one of the three branches, the Panagrolaimidae family, and performed a de novo assembly of four high-quality draft genomes of the canonical (TTAGGC) and novel TRM (TTAGAC) isolates; the latter genomes revealed densely clustered arrays of the novel TRM. We then comprehensively analyzed the subtelomeric regions of the genomes to infer how the novel TRM evolved. We identified DNA damage-repair signatures in subtelomeric sequences that were representative of consequences of telomere maintenance mechanisms by alternative lengthening of telomeres. We propose a hypothetical scenario in which TTAGAC-containing units are clustered in subtelomeric regions and pre-existing TBPs capable of binding both canonical and novel TRMs aided the evolution of the novel TRM in the Panagrolaimidae family.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Wonjoo Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea;
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Barcytė D, Eliáš M. Hydrocytium expands the phylogenetic, morphological, and genomic diversity of the poorly known green algal order Chaetopeltidales. AMERICAN JOURNAL OF BOTANY 2023; 110:e16238. [PMID: 37661934 DOI: 10.1002/ajb2.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
PREMISE Chaetopeltidales is a small, understudied order of the green algal class Chlorophyceae, that is slowly expanding with the occasional discoveries of novel algae. Here we demonstrate that hitherto unrecognized chaetopeltidaleans also exist among previously described but neglected and misclassified species. METHODS Strain SAG 40.91 of Characium acuminatum, shown by previous preliminary evidence to have affinities with the orders Oedogoniales, Chaetophorales, and Chaetopeltidales (together constituting the OCC clade), was investigated with light and electron microscopy to characterize its morphology and ultrastructure. Sequence assemblies of the organellar and nuclear genomes were obtained and utilized in bioinformatic and phylogenetic analyses to address the phylogenetic position of the alga and its salient genomic features. RESULTS The characterization of strain SAG 40.91 and a critical literature review led us to reinstate the forgotten genus Hydrocytium A.Braun 1855, with SAG 40.91 representing its type species, Hydrocytium acuminatum. Independent molecular markers converged on placing H. acuminatum as a deeply diverged lineage of the order Chaetopeltidales, formalized as the new family Hydrocytiaceae. Both chloroplast and mitochondrial genomes shared characteristics with other members of Chaetopeltidales and were bloated by repetitive sequences. Notably, the mitochondrial cox2a gene was transferred into the nuclear genome in the H. acuminatum lineage, independently of the same event in Volvocales. The nuclear genome data from H. acuminatum and from another chaetopeltidalean that was reported by others revealed endogenized viral sequences corresponding to novel members of the phylum Nucleocytoviricota. CONCLUSIONS The resurrected genus Hydrocytium expands the known diversity of chaetopeltidalean algae and provides the first glimpse into their virosphere.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| |
Collapse
|
5
|
Bi YH, Li Z, Zhou ZG. Karyotype analysis of the brown seaweed Saccharina (or Laminaria) japonica. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Sun Q, Wang H, Tao S, Xi X. Large-Scale Detection of Telomeric Motif Sequences in Genomic Data Using TelFinder. Microbiol Spectr 2023; 11:e0392822. [PMID: 36847562 PMCID: PMC10100673 DOI: 10.1128/spectrum.03928-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Telomeres are regions of tandem repeated sequences at the ends of linear chromosomes that protect against DNA damage and chromosome fusion. Telomeres are associated with senescence and cancers and have attracted the attention of an increasing number of researchers. However, few telomeric motif sequences are known. Given the mounting interest in telomeres, an efficient computational tool for the de novo detection of the telomeric motif sequence of new species is needed since experimental-based methods are costly in terms of time and effort. Here, we report the development of TelFinder, an easy-to-use and freely available tool for the de novo detection of telomeric motif sequences from genomic data. The vast quantity of readily available genomic data makes it possible to apply this tool to any species of interest, which will undoubtedly inspire studies requiring telomeric repeat information and improve the utilization of these genomic data sets. We have tested TelFinder on telomeric sequences available in the Telomerase Database, and the detection accuracy reaches 90%. In addition, variation analyses in telomere sequences can be performed by TelFinder for the first time. The telomere variation preference of different chromosomes and even at the ends of the chromosome can provide clues regarding the underlying mechanisms of telomeres. Overall, these results shed new light on the divergent evolution of telomeres. IMPORTANCE Telomeres are reported to be highly correlated with the cell cycle and aging. As a result, research on telomere composition and evolution has become more and more urgent. However, using experimental methods to detect telomeric motif sequences is slow and costly. To combat this challenge, we developed TelFinder, a computational tool for the de novo detection of the telomere composition only using genomic data. In this study, we showed that a lot of complicated telomeric motifs could be identified by TelFinder only using genomic data. In addition, TelFinder can be used to check variation analyses in telomere sequences, which could lead to a deeper understanding of telomere sequences.
Collapse
Affiliation(s)
- Qing Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiheng Tao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuguang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Goemann CL, Wilkinson R, Henriques W, Bui H, Goemann HM, Carlson RP, Viamajala S, Gerlach R, Wiedenheft B. Genome sequence, phylogenetic analysis, and structure-based annotation reveal metabolic potential of Chlorella sp. SLA-04. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
9
|
Zhou Y, Wang Y, Xiong X, Appel AG, Zhang C, Wang X. Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Sci Alliance 2022; 5:5/7/e202101163. [PMID: 35365574 PMCID: PMC8977481 DOI: 10.26508/lsa.202101163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Telomeres consist of highly conserved simple tandem telomeric repeat motif (TRM): (TTAGG)n in arthropods, (TTAGGG)n in vertebrates, and (TTTAGGG)n in most plants. TRM can be detected from chromosome-level assembly, which typically requires long-read sequencing data. To take advantage of short-read data, we developed an ultra-fast Telomeric Repeats Identification Pipeline and evaluated its performance on 91 species. With proven accuracy, we applied Telomeric Repeats Identification Pipeline in 129 insect species, using 7 Tbp of short-read sequences. We confirmed (TTAGG)n as the TRM in 19 orders, suggesting it is the ancestral form in insects. Systematic profiling in Hymenopterans revealed a diverse range of TRMs, including the canonical 5-bp TTAGG (bees, ants, and basal sawflies), three independent losses of tandem repeat form TRM (Ichneumonoids, hunting wasps, and gall-forming wasps), and most interestingly, a common 8-bp (TTATTGGG)n in Chalcid wasps with two 9-bp variants in the miniature wasp (TTACTTGGG) and fig wasps (TTATTGGGG). Our results identified extraordinary evolutionary fluidity of Hymenopteran TRMs, and rapid evolution of TRM and repeat abundance at all evolutionary scales, providing novel insights into telomere evolution.
Collapse
Affiliation(s)
- Yihang Zhou
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiao Xiong
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA
| | - Arthur G Appel
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA.,Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, USA.,Department of Entomology and Plant Pathology, Auburn University, AL, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| |
Collapse
|
10
|
Bansal A, Phogat P, Kukreti S. A novel G·G·T non-conventional intramolecular triplex formed by the double repeat sequence of Chlamydomonas telomeric DNA. RSC Adv 2022; 12:15918-15924. [PMID: 35733691 PMCID: PMC9134377 DOI: 10.1039/d2ra00861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
The competition among the DNA non-canonical structures has been widely studied in repetitive DNA sequences. The Chlamydomonas reinhardtii telomere (TTTTAGGG)n is found an exception to the general idea of forming folded G-quadruplex by few repeats of any telomeric sequence.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
- Department of Chemistry, Hansraj College, University of Delhi, (North Campus), Delhi, 110007, India
| | - Priyanka Phogat
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
11
|
Fajkus P, Kilar A, Nelson ADL, Holá M, Peška V, Goffová I, Fojtová M, Zachová D, Fulnečková J, Fajkus J. Evolution of plant telomerase RNAs: farther to the past, deeper to the roots. Nucleic Acids Res 2021; 49:7680-7694. [PMID: 34181710 PMCID: PMC8287931 DOI: 10.1093/nar/gkab545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Agata Kilar
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | | | - Marcela Holá
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague CZ-16000, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Ivana Goffová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC Masaryk University, Brno CZ-62500, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| |
Collapse
|
12
|
Chaux-Jukic F, O'Donnell S, Craig RJ, Eberhard S, Vallon O, Xu Z. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res 2021; 49:7571-7587. [PMID: 34165564 PMCID: PMC8287924 DOI: 10.1093/nar/gkab534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.
Collapse
Affiliation(s)
- Frédéric Chaux-Jukic
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Samuel O'Donnell
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Olivier Vallon
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| |
Collapse
|
13
|
Chaux-Jukic F, O'Donnell S, Craig RJ, Eberhard S, Vallon O, Xu Z. Architecture and evolution of subtelomeres in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res 2021. [PMID: 34165564 DOI: 10.1101/2021.01.29.428817)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae.
Collapse
Affiliation(s)
- Frédéric Chaux-Jukic
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Samuel O'Donnell
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK
| | - Stephan Eberhard
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Olivier Vallon
- Sorbonne Université, CNRS, UMR7141, Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light-Sensing in Microalgae, 75005 Paris, France
| | - Zhou Xu
- Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France
| |
Collapse
|
14
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
15
|
Single-stranded DNA-binding proteins in plant telomeres. Int J Biol Macromol 2020; 165:1463-1467. [PMID: 32998016 DOI: 10.1016/j.ijbiomac.2020.09.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022]
Abstract
Telomere single-stranded DNA-binding proteins bind to the terminal single-stranded DNA of telomeres, maintaining and protecting the chromosomal end in eukaryotes. This paper focuses on the protective mechanism of single-stranded DNA-binding proteins in plant telomeres. This review summarizes the roles of plant single-stranded DNA-binding proteins and their influence on telomere length and telomerase. This review provides insights into the mechanism and development of single-stranded DNA-binding proteins in plants.
Collapse
|
16
|
Peska V, Mátl M, Mandáková T, Vitales D, Fajkus P, Fajkus J, Garcia S. Human-like telomeres in Zostera marina reveal a mode of transition from the plant to the human telomeric sequences. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5786-5793. [PMID: 32589715 DOI: 10.1093/jxb/eraa293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/16/2020] [Indexed: 05/26/2023]
Abstract
A previous study describing the genome of Zostera marina, the most widespread seagrass in the Northern hemisphere, revealed some genomic signatures of adaptation to the aquatic environment such as the loss of stomatal genes, while other functions such as an algal-like cell wall composition were acquired. Beyond these, the genome structure and organization were comparable with those of the majority of plant genomes sequenced, except for one striking feature that went unnoticed at that time: the presence of human-like instead of the expected plant-type telomeric sequences. By using different experimental approaches including fluorescence in situ hybridization (FISH), genome skimming by next-generation sequencing (NGS), and analysis of non-coding transcriptome, we have confirmed its telomeric location in the chromosomes of Z. marina. We have also identified its telomerase RNA (TR) subunit, confirming the presence of the human-type telomeric sequence in the template region. Remarkably, this region was found to be very variable even in clades with a highly conserved telomeric sequence across their species. Based on this observation, we propose that alternative annealing preferences in the template borders can explain the transition between the plant and human telomeric sequences. The further identification of paralogues of TR in several plant genomes led us to the hypothesis that plants may retain an increased ability to change their telomeric sequence. We discuss the implications of this occurrence in the evolution of telomeres while introducing a mechanistic model for the transition from the plant to the human telomeric sequences.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Mátl
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Plant Molecular Genetics, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, Barcelona, Catalonia, Spain
| | - Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Peska V, Garcia S. Origin, Diversity, and Evolution of Telomere Sequences in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:117. [PMID: 32153618 PMCID: PMC7046594 DOI: 10.3389/fpls.2020.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Telomeres are basic structures of eukaryote genomes. They distinguish natural chromosome ends from double-stranded breaks in DNA and protect chromosome ends from degradation or end-to-end fusion with other chromosomes. Telomere sequences are usually tandemly arranged minisatellites, typically following the formula (TxAyGz)n. Although they are well conserved across large groups of organisms, recent findings in plants imply that their diversity has been underestimated. Changes in telomeres are of enormous evolutionary importance as they can affect whole-genome stability. Even a small change in the telomere motif of each repeat unit represents an important interference in the system of sequence-specific telomere binding proteins. Here, we provide an overview of telomere sequences, considering the latest phylogenomic evolutionary framework of plants in the broad sense (Archaeplastida), in which new telomeric sequences have recently been found in diverse and economically important families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in many groups of green algae, deviations from the typical plant telomeric sequence have also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well as extant gaps in knowledge are discussed. With the increasing availability of genomic approaches, it is likely that more telomeric diversity will be uncovered in the future. We also discuss basic methods used for telomere identification and we explain the implications of the recent discovery of plant telomerase RNA on further research about the role of telomerase in eukaryogenesis or on the molecular causes and consequences of telomere variability.
Collapse
Affiliation(s)
- Vratislav Peska
- Department of Cell Biology and Radiobiology, The Czech Academy of Sciences, Institute of Biophysics, Brno, Czechia
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
18
|
Luo M, Teng X, Wang B, Zhang J, Liu Y, Liu D, Li H, Lu H. Protection of telomeres 1 (POT1) of Pinus tabuliformis bound the telomere ssDNA. TREE PHYSIOLOGY 2020; 40:119-127. [PMID: 31860719 DOI: 10.1093/treephys/tpz125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Protection of telomeres 1 (POT1) is a telomeric protein that binds to the telomere single-stranded (ss) region. It plays an essential role in maintaining genomic stability in both plants and animals. In this study, we investigated the properties of POT1 in Pinus tabuliformis Carr. (PtPOT1) through electrophoretic mobility shift assay. PtPOT1 harbored affinity for telomeric ssDNA and could bind plant- and mammalian-type ssDNA sequences. Notably, there were two oligonucleotide/oligosaccharide binding (OB) folds, and OB1 or OB2 alone, or both together, could bind ssDNA, which is significantly different from human POT1. Based on our data, we hypothesized that the two OB folds of PtPOT1 bound the same ssDNA. This model not only provides new insight into the ssDNA binding of PtPOT1 but also sheds light on the functional divergence of POT1 proteins in gymnosperms and humans.
Collapse
Affiliation(s)
- Mei Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No.35, Qinghua East road, Haidian District, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaotong Teng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No.35, Qinghua East road, Haidian District, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Fajkus P, Peška V, Závodník M, Fojtová M, Fulnečková J, Dobias Š, Kilar A, Dvořáčková M, Zachová D, Nečasová I, Sims J, Sýkorová E, Fajkus J. Telomerase RNAs in land plants. Nucleic Acids Res 2019; 47:9842-9856. [PMID: 31392988 PMCID: PMC6765143 DOI: 10.1093/nar/gkz695] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.
Collapse
Affiliation(s)
- Petr Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic
| | - Michal Závodník
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Miloslava Fojtová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Fulnečková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Šimon Dobias
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Agata Kilar
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ivona Nečasová
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Jason Sims
- Max Perutz Labs, University of Vienna, Dr. Bohr Gasse 9, A-1030, Vienna, Austria
| | - Eva Sýkorová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic
| | - Jiří Fajkus
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno CZ-61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| |
Collapse
|
20
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Comparative analysis of Chlorosarcinopsis eremi mitochondrial genome with some Chlamydomonadales algae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1301-1310. [PMID: 31564790 PMCID: PMC6745591 DOI: 10.1007/s12298-019-00696-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Chlorosarcinopsis eremi is a member of Chlamydomonadales algae which is isolated from terrestrial environments. In this study, the mitochondrial genome of C. eremi isolated from desert region of Iran, was represented for the first time. Following sequencing, assembly and annotation, comparative analyses of C. eremi and other available Chlamydomonadales algae complete mitochondrial genomes were performed. The mitochondrial genome of C. eremi was circular, had a low number of genes coding in the same strand with a minor amount of repeated sequences; same as other non-Reinhardtinia species of Chlamydomonadales algae. GC content of C. eremi mitochondrial genome was in normal range when compared with non-Chlamydomonadales organisms, but among Chlamydomonadales algae, C. eremi had a low GC content mitochondrial genome. C. eremi had the highest percent of non-coding sequences in comparison with other available Chlamydomonadales mitochondrial genomes which was related to intergenic regions. Identity analysis of protein-coding sequences of Chlamydomonadales mitochondrial genomes showed more divergences and may be related to the high mutation rate of mitochondrial genome reported in microbial eukaryotes.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
21
|
Eberhard S, Valuchova S, Ravat J, Fulneček J, Jolivet P, Bujaldon S, Lemaire SD, Wollman FA, Teixeira MT, Riha K, Xu Z. Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants. Life Sci Alliance 2019; 2:2/3/e201900315. [PMID: 31160377 PMCID: PMC6549138 DOI: 10.26508/lsa.201900315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
This study characterizes the sequence, end structure, and length distribution of Chlamydomonas reinhardtii telomeres and shows that telomerase mutants are defective in telomere maintenance. Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3′ overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.
Collapse
Affiliation(s)
- Stephan Eberhard
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Sona Valuchova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julie Ravat
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Jaroslav Fulneček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pascale Jolivet
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sandrine Bujaldon
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Stéphane D Lemaire
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zhou Xu
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France .,Sorbonne Université, CNRS, UMR 7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| |
Collapse
|
22
|
Jebali A, Acién FG, Jiménez-Ruiz N, Gómez C, Fernández-Sevilla JM, Mhiri N, Karray F, Sayadi S, Molina-Grima E. Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:119. [PMID: 31110560 PMCID: PMC6511200 DOI: 10.1186/s13068-019-1461-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/02/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microalgae are attracting much attention as a promising feedstock for renewable energy production, while simultaneously providing environmental benefits. So far, comparison studies for microalgae selection for this purpose were mainly based on data obtained from batch cultures, where the lipid content and the growth rate were the main selection parameters. The present study evaluates the performance of native microalgae strains in semi-continuous mode, considering the suitability of the algal-derived fatty acid composition and the saponifiable lipid productivity as selection criteria for microalgal fuel production. Evaluation of the photosynthetic performance and the robustness of the selected strain under outdoor conditions was conducted to assess its capability to grow and tolerate harsh environmental growth conditions. RESULTS In this study, five native microalgae strains from Tunisia (one freshwater and four marine strains) were isolated and evaluated as potential raw material to produce biofuel. Firstly, molecular identification of the strains was performed. Then, experiments in semi-continuous mode at different dilution rates were carried out. The local microalgae strains were characterized in terms of biomass and lipid productivity, in addition to protein content, and fatty acid profile, content and productivity. The marine strain Chlorella sp. showed, at 0.20 1/day dilution rate, lipid and biomass productivities of 35.10 mg/L day and 0.2 g/L day, respectively. Moreover, data from chlorophyll fluorescence measurements demonstrated the robustness of this strain as it tolerated extreme outdoor conditions including high (38 °C) and low (10 °C) temperature, and high irradiance (1600 µmol/m2 s). CONCLUSIONS Selection of native microalgae allows identifying potential strains suitable for use in the production of biofuels. The selected strain Chlorella sp. demonstrated adequate performance to be scaled up to outdoor conditions. Although experiments were performed at laboratory conditions, the methodology used in this paper allows a robust evaluation of microalgae strains for potential market applications.
Collapse
Affiliation(s)
- A. Jebali
- Laboratory of Environmental Bioprocesses, Sfax Centre of Biotechnology, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - F. G. Acién
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - N. Jiménez-Ruiz
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - C. Gómez
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - J. M. Fernández-Sevilla
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - N. Mhiri
- Laboratory of Environmental Bioprocesses, Sfax Centre of Biotechnology, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - F. Karray
- Laboratory of Environmental Bioprocesses, Sfax Centre of Biotechnology, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - S. Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - E. Molina-Grima
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
23
|
Yang QF, Liu L, Liu Y, Zhou ZG. Telomeric localization of the Arabidopsis-type heptamer repeat, (TTTAGGG) n , at the chromosome ends in Saccharina japonica (Phaeophyta). JOURNAL OF PHYCOLOGY 2017; 53:235-240. [PMID: 27885670 DOI: 10.1111/jpy.12497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Telomeres generally consist of short repeats of minisatellite DNA sequences and are useful in chromosome identification and karyotype analysis. To date, telomeres have not been characterized in the economically important brown seaweed Saccharina japonica, thus its full cytogenetic research and genetic breeding potential has not been realized. Herein, the tentative sequence of telomeres in S. japonica was identified by PCR amplification with primers designed based on the Arabidopsis-type telomere sequence (TTTAGGG)n , which was chosen out of three possible telomeric repeat DNA sequences typically present in plants and algae. After PCR optimization and cloning, sequence analysis of the amplified products from S. japonica genomic DNA showed that they were composed of repeat units, (TTTAGGG)n , in which the repeat number ranged from 15 to 63 (n = 46). This type of repeat sequence was verified by a Southern blot assay with the Arabidopsis-type telomere sequence as a probe. The digestion of S. japonica genomic DNA with the exonuclease Bal31 illustrated that the target sequence corresponding to the Arabidopsis-type telomere sequence was susceptible to Bal31 digestion, suggesting that the repeat sequence was likely located at the outermost ends of the kelp chromosomes. Fluorescence in situ hybridizations with the aforementioned probe provided the initial cytogenetic evidence that the hybridization signals were principally localized at both ends of S. japonica chromosomes. This study indicates that the telomeric repeat of the kelp chromosomes is (TTTAGGG)n which differs from the previously reported (TTAGGG)n sequence in Ectocarpus siliculosus through genome sequencing, thereby suggesting distinct telomeres in brown seaweeds.
Collapse
Affiliation(s)
- Qi-Fan Yang
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Liu
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Liu
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-Life Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
24
|
Uzlíková M, Fulnečková J, Weisz F, Sýkorová E, Nohýnková E, Tůmová P. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol Biochem Parasitol 2017; 211:31-38. [DOI: 10.1016/j.molbiopara.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
25
|
Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 2016; 114:16-27. [PMID: 27595912 DOI: 10.1016/j.ymeth.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Collapse
Affiliation(s)
- Vratislav Peška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
26
|
Mason JM, Randall TA, Capkova Frydrychova R. Telomerase lost? Chromosoma 2016; 125:65-73. [PMID: 26162505 PMCID: PMC6512322 DOI: 10.1007/s00412-015-0528-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023]
Abstract
Telomerase and telomerase-generated telomeric DNA sequences are widespread throughout eukaryotes, yet they are not universal. Neither telomerase nor the simple DNA repeats associated with telomerase have been found in some plant and animal species. Telomerase was likely lost from Diptera before the divergence of Diptera and Siphonaptera, some 260 million years ago. Even so, Diptera is one of the most successful animal orders, making up 11% of known animal species. In addition, many species of Coleoptera and Hemiptera seem to lack canonical telomeric repeats at their chromosome ends. These and other insects that appear to lack canonical terminal repeat sequences account for another 10-15% of animal species. Conversely, the silk moth Bombyx mori maintains canonical telomeric sequences at its chromosome ends but seems to lack a functional telomerase. We speculate that a telomere-specific capping complex that recognizes the telomeric repeats and protects chromosome ends is the determining factor in maintaining canonical telomeric sequences and that telomerase is an early and efficacious mechanism for satisfying the needs of capping complex. There are alternate mechanisms for maintaining chromosome ends that do not depend on telomerase, such as recombination found in some human cancer cells and yeast mutants. These mechanisms may maintain the canonical telomeric repeats or allow the terminal sequence to evolve when specificity of the capping complex for terminal repeat sequences is weak.
Collapse
Affiliation(s)
- James M Mason
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
27
|
Fulnečková J, Ševčíková T, Lukešová A, Sýkorová E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales). Chromosoma 2015; 125:437-51. [PMID: 26596989 DOI: 10.1007/s00412-015-0557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022]
Abstract
Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.
Collapse
Affiliation(s)
- Jana Fulnečková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic.,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Life Science Research Centre & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-71000, Ostrava, Czech Republic
| | - Alena Lukešová
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, v.vi., Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic. .,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
28
|
Kawasaki Y, Nakada T, Tomita M. Taxonomic revision of oil-producing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. JOURNAL OF PHYCOLOGY 2015; 51:1000-1016. [PMID: 26986894 DOI: 10.1111/jpy.12343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Historically, species in Volvocales were classified based primarily on morphology. Although the taxonomy of Chlamydomonas has been re-examined using a polyphasic approach including molecular phylogeny, that of Chlorococcum (Cc.), the largest coccoid genus in Volvocales, has yet to be reexamined. Six species thought to be synonymous with the oil-producing alga Cc. oleofaciens were previously not confirmed by molecular phylogeny. In this study, seven authentic strains of Cc. oleofaciens and its putative synonyms, along with 11 relatives, were examined based on the phylogeny of the 18S ribosomal RNA (rRNA) gene, comparisons of secondary structures of internal transcribed spacer 1 (ITS1) and ITS2 rDNA, and morphological observations by light microscopy. Seven 18S rRNA types were recognized among these strains and three were distantly related to Cc. oleofaciens. Comparisons of ITS rDNA structures suggested possible separation of the remaining four types into different species. Shapes of vegetative cells, thickness of the cell walls in old cultures, the size of cells in old cultures, and stigma morphology of zoospores also supported the 18S rRNA grouping. Based on these results, the 18 strains examined were reclassified into seven species. Among the putative synonyms, synonymy of Cc. oleofaciens, Cc. croceum, and Cc. granulosum was confirmed, and Cc. microstigmatum, Cc. rugosum, Cc. aquaticum, and Cc. nivale were distinguished from Cc. oleofaciens. Furthermore, another related strain is described as a new species, Macrochloris rubrioleum sp. nov.
Collapse
Affiliation(s)
- Yuriko Kawasaki
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| |
Collapse
|
29
|
Vlasiuk M, Taras Shevchenko National University of Kyiv, ESC Institute of Biology. Chlamydomonas s. l. (Chlorophyta), the genus delimitation and generic diagnostic features in the modern sense (literature review). UKRAINIAN BOTANICAL JOURNAL 2015. [DOI: 10.15407/ukrbotj72.04.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Suzuki S, Shirato S, Hirakawa Y, Ishida KI. Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata. Genome Biol Evol 2015; 7:1533-45. [PMID: 26002880 PMCID: PMC4494063 DOI: 10.1093/gbe/evv096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many algal groups acquired complex plastids by the uptake of green and red algae through multiple secondary endosymbioses. As a result of gene loss and transfer during the endosymbiotic processes, algal endosymbiont nuclei disappeared in most cases. However, chlorarachniophytes and cryptophytes still possess a relict nucleus, so-called the nucleomorph, of the green and red algal endosymbiont, respectively. Nucleomorph genomes are an interesting and suitable model to study the reductive evolution of endosymbiotically derived genomes. To date, nucleomorph genomes have been sequenced in four cryptophyte species and two chlorarachniophyte species, including Bigelowiella natans (373 kb) and Lotharella oceanica (610 kb). In this study, we report complete nucleomorph genome sequences of two chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata, to gain insight into the reductive evolution of nucleomorph genomes in the chlorarachniophytes. The nucleomorph genomes consist of three chromosomes totaling 374 and 432 kb in size in A. amoebiformis and L. vacuolata, respectively. Comparative analyses among four chlorarachniophyte nucleomorph genomes revealed that these sequences share 171 function-predicted genes (86% of total 198 function-predicted nucleomorph genes), including the same set of genes encoding 17 plastid-associated proteins, and no evidence of a recent nucleomorph-to-nucleus gene transfer was found. This suggests that chlorarachniophyte nucleomorph genomes underwent most of their reductive evolution prior to the radiation of extent members of the group. However, there are slight variations in genome size, GC content, duplicated gene number, and subtelomeric regions among the four nucleomorph genomes, suggesting that the genomes might be undergoing changes that do not affect the core functions in each species.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shu Shirato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Fojtová M, Sýkorová E, Najdekrová L, Polanská P, Zachová D, Vagnerová R, Angelis KJ, Fajkus J. Telomere dynamics in the lower plant Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2015; 87:591-601. [PMID: 25701469 DOI: 10.1007/s11103-015-0299-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fojtová M, Fajkus J. Epigenetic Regulation of Telomere Maintenance. Cytogenet Genome Res 2014; 143:125-35. [DOI: 10.1159/000360775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
34
|
Fulnecková J, Sevcíková T, Fajkus J, Lukesová A, Lukes M, Vlcek C, Lang BF, Kim E, Eliás M, Sykorová E. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol Evol 2013; 5:468-83. [PMID: 23395982 PMCID: PMC3622300 DOI: 10.1093/gbe/evt019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.
Collapse
Affiliation(s)
- Jana Fulnecková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 2013; 8:e57122. [PMID: 23536760 PMCID: PMC3594237 DOI: 10.1371/journal.pone.0057122] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022] Open
Abstract
Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis) using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb), which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35%) are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.
Collapse
Affiliation(s)
- Yoji Nakamura
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
- * E-mail: (YN); (TG)
| | - Naobumi Sasaki
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Kobayashi
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki-shi, Nagasaki, Japan
| | - Nobuhiko Ojima
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Motoshige Yasuike
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Yuya Shigenobu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Masataka Satomi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | | | - Koji Shiwaku
- Hitachi Solutions, Ltd., Shinagawa-ku, Tokyo, Japan
| | | | | | - Ichiro Nakayama
- Ministry of Agriculture, Forestry and Fisheries, Chiyoda-ku, Tokyo, Japan
| | - Fuminari Ito
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise, Mie, Japan
| | - Kazuhiro Nakajima
- Japan Sea National Fisheries Research Institute, Fisheries Research Agency, Chuou-ku, Niigata, Japan
| | - Motohiko Sano
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Tokio Wada
- Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - Satoru Kuhara
- Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | - Takashi Gojobori
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- * E-mail: (YN); (TG)
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
36
|
Ševčíková T, Bišová K, Fojtová M, Lukešová A, Hrčková K, Sýkorová E. Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda. FEBS Lett 2013; 587:743-8. [PMID: 23395610 DOI: 10.1016/j.febslet.2013.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/17/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Telomerase maintains the ends of eukaryotic chromosomes, and its activity is an important parameter correlating with the proliferative capacity of cells. We have investigated cell cycle-specific changes in telomerase activity using cultures of Desmodesmus quadricauda, a model alga naturally synchronized by light/dark entrainment. A quantitative telomerase assay revealed high activity in algal cultures, with slight changes during the light period. Significantly increased telomerase activity was observed at the end of the dark phase, when cell division was complete. In contrast to other models, a natural separation between nuclear and cellular division typical for the cell cycle in D. quadricauda made this observation possible.
Collapse
Affiliation(s)
- Tereza Ševčíková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, 612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Škaloud P, Kalina T, Nemjová K, De Clerck O, Leliaert F. Morphology and Phylogenetic Position of the Freshwater Green Microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). JOURNAL OF PHYCOLOGY 2013; 49:115-129. [PMID: 27008394 DOI: 10.1111/jpy.12021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/22/2012] [Indexed: 06/05/2023]
Abstract
The green algal family Chlorochytriaceae comprises relatively large coccoid algae with secondarily thickened cell walls. Despite its morphological distinctness, the family remained molecularly uncharacterized. In this study, we investigated the morphology and phylogenetic position of 16 strains determined as members of two Chlorochytriaceae genera, Chlorochytrium and Scotinosphaera. The phylogenetic reconstructions were based on the analyses of two data sets, including a broad, concatenated alignment of small subunit rDNA and rbcL sequences, and a 10-gene alignment of 32 selected taxa. All analyses revealed the distant relation of the two genera, segregated in two different classes: Chlorophyceae and Ulvophyceae. Chlorochytrium strains were inferred in two distinct clades of the Stephanosphaerinia clade within the Chlorophyceae. Whereas clade A morphologically fits the description of Chlorochytrium, the strains of clade B coincide with the circumscription of the genus Neospongiococcum. The Scotinosphaera strains formed a distinct and highly divergent clade within the Ulvophyceae, warranting the recognition of a new order, Scotinosphaerales. Morphologically, the order is characterized by large cells bearing local cell wall thickenings, pyrenoid matrix dissected by numerous anastomosing cytoplasmatic channels, sporogenesis comprising the accumulation of secondary carotenoids in the cell periphery and almost simultaneous cytokinesis. The close relationship of the Scotinosphaerales with other early diverging ulvophycean orders enforces the notion that nonmotile unicellular freshwater organisms have played an important role in the early diversification of the Ulvophyceae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Tomáš Kalina
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Katarína Nemjová
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Olivier De Clerck
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| | - Frederik Leliaert
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| |
Collapse
|