1
|
Medina-Chávez NO, Rodriguez-Cruz UE, Souza V, De la Torre-Zavala S, Travisano M. Salty secrets of Halobacterium salinarum AD88: a new archaeal ecotype isolated from Cuatro Cienegas Basin. BMC Genomics 2025; 26:399. [PMID: 40275130 PMCID: PMC12023398 DOI: 10.1186/s12864-025-11550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The Cuatro Cienegas Basin (CCB) in Mexico, represents a unique ecological habitat, characterized by extreme and fluctuating conditions, providing a window into ancient evolutionary processes. This basin, characterized by hypersalinity and phosphorus scarcity, harbors diverse microbial communities that exhibit remarkable adaptations to oligotrophic conditions. Among these, Halobacterium salinarum, a halophilic archaeon known for its polyploid genome and metabolic versatility, has been extensively studied as a model for extremophile survival. However, only a limited number of H. salinarum strains have been successfully cultured and characterized to date. Here, we report the isolation and genomic analysis of a novel Halobacterium salinarum strain, AD88, from microbial mats at the Archaean Domes site in the CCB. This strain displays unique genomic features, including smaller plasmid sizes and distinctive metabolic pathways for phosphorus and sulfur utilization. Comparative analyses with other Halobacterium strains revealed genetic innovations, such as genes involved in sulfolipid biosynthesis, enabling membrane stability in phosphorus-depleted environments, and adaptations for horizontal gene transfer, which facilitate genomic flexibility in response to environmental pressures. This study reveals that H. salinarum AD88 is the first recorded diploid strain of Halobacterium, a feature previously undocumented in this genus. Phylogenomic reconstruction positioned AD88 tightly within the Halobacterium clade, reflecting its evolutionary history within the genus. Pangenome analysis further highlighted the open nature of the Halobacterium genus, with AD88 contributing novel accessory genes linked to ecological specialization. These findings emphasize the evolutionary significance of the CCB as a natural laboratory for studying microbial adaptation and expand our understanding of archaeal genomic diversity and functional innovation under extreme conditions.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Ulises E Rodriguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Susana De la Torre-Zavala
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, México
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
3
|
Griffiths DB, Tiwari RP, Murphy DV, Scott C. Comparative genomics of the highly halophilic Haloferacaceae. Sci Rep 2024; 14:27025. [PMID: 39506039 PMCID: PMC11541754 DOI: 10.1038/s41598-024-78438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
The Haloferacaceae are a family of extremely halophilic archaea with many species producing enzymes and products beneficial for industrial biotechnology. They are, however, relatively under-characterised with regards to genetics and gene products. This study aims to use existing sequence data to highlight genetic diversity, create pangenomes for three genera, and provide secondary metabolite and pathway analysis. This will establish current knowledge and identify key gaps in research. We show that the Haloferacaceae have significant genetic diversity between genera, with numerous gene gain and loss events in key genera. It also found that the model genus, Haloferax, has relatively low identified secondary metabolites compared to other genera within the family. Additionally, this study has identified potential biotechnology targets for heterologous expression in model organisms.
Collapse
Affiliation(s)
- Dana B Griffiths
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia.
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia.
| | - Ravi P Tiwari
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- CSIRO Environment, Canberra, ACT, 2601, Australia
| |
Collapse
|
4
|
Kloub L, Gosselin S, Graf J, Gogarten JP, Bansal MS. Investigating Additive and Replacing Horizontal Gene Transfers Using Phylogenies and Whole Genomes. Genome Biol Evol 2024; 16:evae180. [PMID: 39163267 PMCID: PMC11375855 DOI: 10.1093/gbe/evae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Horizontal gene transfer (HGT) is fundamental to microbial evolution and adaptation. When a gene is horizontally transferred, it may either add itself as a new gene to the recipient genome (possibly displacing nonhomologous genes) or replace an existing homologous gene. Currently, studies do not usually distinguish between "additive" and "replacing" HGTs, and their relative frequencies, integration mechanisms, and specific roles in microbial evolution are poorly understood. In this work, we develop a novel computational framework for large-scale classification of HGTs as either additive or replacing. Our framework leverages recently developed phylogenetic approaches for HGT detection and classifies HGTs inferred between terminal edges based on gene orderings along genomes and phylogenetic relationships between the microbial species under consideration. The resulting method, called DART, is highly customizable and scalable and can classify a large fraction of inferred HGTs with high confidence and statistical support. Our application of DART to a large dataset of thousands of gene families from 103 Aeromonas genomes provides insights into the relative frequencies, functional biases, and integration mechanisms of additive and replacing HGTs. Among other results, we find that (i) the relative frequency of additive HGT increases with increasing phylogenetic distance, (ii) replacing HGT dominates at shorter phylogenetic distances, (iii) additive and replacing HGTs have strikingly different functional profiles, (iv) homologous recombination in flanking regions of a novel gene may be a frequent integration mechanism for additive HGT, and (v) phages and mobile genetic elements likely play an important role in facilitating additive HGT.
Collapse
Affiliation(s)
- Lina Kloub
- School of Computing, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269-4155, USA
| | - Sophia Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT 06269-3125, USA
- The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Mukul S Bansal
- School of Computing, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269-4155, USA
- The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Feng Y, Arsenault D, Louyakis AS, Altman-Price N, Gophna U, Papke RT, Gogarten JP. Using the pan-genomic framework for the discovery of genomic islands in the haloarchaeon Halorubrum ezzemoulense. mBio 2024; 15:e0040824. [PMID: 38619241 PMCID: PMC11078007 DOI: 10.1128/mbio.00408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
In this study, we use pan-genomics to characterize the genomic variability of the widely dispersed halophilic archaeal species Halorubrum ezzemoulense (Hez). We include a multi-regional sampling of newly sequenced, high-quality draft genomes. The pan-genome graph of the species reveals 50 genomic islands that represent rare accessory genetic capabilities available to members. Most notably, we observe rearrangements that have led to the insertion/recombination/replacement of mutually exclusive genomic islands in equivalent genome positions ("homeocassettes"). These conflicting islands encode for similar functions, but homologs from islands located between the same core genes exhibit high divergence on the amino acid level, while the neighboring core genes are nearly identical. Both islands of a homeocassette often coexist in the same geographic location, suggesting that either island may be beyond the reach of selective sweeps and that these loci of divergence between Hez members are maintained and persist long term. This implies that subsections of the population have different niche preferences and rare metabolic capabilities. After an evaluation of the gene content in the homeocassettes, we speculate that these islands may play a role in the speciation, niche adaptability, and group selection dynamics in Hez. Though homeocassettes are first described in this study, similar replacements and divergence of genes on genomic islands have been previously reported in other Haloarchaea and distantly related Archaea, suggesting that homeocassettes may be a feature in a wide range of organisms outside of Hez.IMPORTANCEThis study catalogs the rare genes discovered in strains of the species Halorubrum ezzemoulense (Hez), an obligate halophilic archaeon, through the perspective of its pan-genome. These rare genes are often found to be arranged on islands that confer metabolic and transport functions and contain genes that have eluded previous studies. The discovery of divergent, but homologous islands occupying equivalent genome positions ("homeocassettes") in different genomes, reveals significant new information on genome evolution in Hez. Homeocassette pairs encode for similar functions, but their dissimilarity and distribution imply high rates of recombination, different specializations, and niche preferences in Hez. The coexistence of both islands of a homeocassette pair in multiple environments demonstrates that both islands are beyond the reach of selective sweeps and that these genome content differences between strains persist long term. The switch between islands through recombination under different environmental conditions may lead to a greater range of niche adaptability in Hez.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Danielle Arsenault
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Artemis S. Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Avinoam Adam Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
6
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
7
|
Karamycheva S, Wolf YI, Persi E, Koonin EV, Makarova KS. Analysis of lineage-specific protein family variability in prokaryotes combined with evolutionary reconstructions. Biol Direct 2022; 17:22. [PMID: 36042479 PMCID: PMC9425974 DOI: 10.1186/s13062-022-00337-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Evolutionary rate is a key characteristic of gene families that is linked to the functional importance of the respective genes as well as specific biological functions of the proteins they encode. Accurate estimation of evolutionary rates is a challenging task that requires precise phylogenetic analysis. Here we present an easy to estimate protein family level measure of sequence variability based on alignment column homogeneity in multiple alignments of protein sequences from Clade-Specific Clusters of Orthologous Genes (csCOGs). Results We report genome-wide estimates of variability for 8 diverse groups of bacteria and archaea and investigate the connection between variability and various genomic and biological features. The variability estimates are based on homogeneity distributions across amino acid sequence alignments and can be obtained for multiple groups of genomes at minimal computational expense. About half of the variance in variability values can be explained by the analyzed features, with the greatest contribution coming from the extent of gene paralogy in the given csCOG. The correlation between variability and paralogy appears to originate, primarily, not from gene duplication, but from acquisition of distant paralogs and xenologs, introducing sequence variants that are more divergent than those that could have evolved in situ during the lifetime of the given group of organisms. Both high-variability and low-variability csCOGs were identified in all functional categories, but as expected, proteins encoded by integrated mobile elements as well as proteins involved in defense functions and cell motility are, on average, more variable than proteins with housekeeping functions. Additionally, using linear discriminant analysis, we found that variability and fraction of genomes carrying a given gene are the two variables that provide the best prediction of gene essentiality as compared to the results of transposon mutagenesis in Sulfolobus islandicus. Conclusions Variability, a measure of sequence diversity within an alignment relative to the overall diversity within a group of organisms, offers a convenient proxy for evolutionary rate estimates and is informative with respect to prediction of functional properties of proteins. In particular, variability is a strong predictor of gene essentiality for the respective organisms and indicative of sub- or neofunctionalization of paralogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00337-7.
Collapse
Affiliation(s)
- Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
8
|
Gatica-Soria LM, Ceriotti LF, Garcia LE, Virginia Sanchez-Puerta M. Native and foreign mitochondrial and nuclear encoded proteins conform the OXPHOS complexes of a holoparasitic plant. Gene 2022; 817:146176. [PMID: 35031426 DOI: 10.1016/j.gene.2021.146176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The intimate contact between the holoparasitic plant Lophophytum mirabile (Balanophoraceae) and its host plant (Fabaceae) facilitates the exchange of genetic information, increasing the frequency of horizontal gene transfer (HGT). Lophophytum stands out because it acquired a large number of mitochondrial genes (greater than 20) from its legume host that replaced the majority of the native homologs. These foreign genes code for proteins that form multisubunit enzyme complexes, such as those in the oxidative phosphorylation system (OXPHOS) and cytochrome c maturation (ccm) system, together with dozens of nuclear-encoded subunits. However, the existence and the origin of the nuclear subunits that form the major part of the OXPHOS and ccm system in Lophophytum remain unknown. It was proposed that nuclear-encoding genes whose products interact with foreign mitochondrial proteins are also foreign, minimizing the incompatibilities that could arise in the assembly and functioning of these multiprotein complexes. We identified a nearly complete set of OXPHOS and ccm system subunits evolving under selective constraints in the transcriptome of Lophophytum, indicating that OXPHOS is functional and resembles that of free-living angiosperms. Maximum Likelihood phylogenetic analyses revealed a single case of HGT in the nuclear genes, which results in mosaic OXPHOS and ccm system in Lophophytum. These observations raise new questions about the evolution and physiology of this parasitic plant. A putative case of cooperation between two foreign (one mitochondrial and one nuclear) genes is presented.
Collapse
Affiliation(s)
- Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
9
|
Dead but Not Forgotten: How Extracellular DNA, Moisture, and Space Modulate the Horizontal Transfer of Extracellular Antibiotic Resistance Genes in Soil. Appl Environ Microbiol 2022; 88:e0228021. [PMID: 35323025 DOI: 10.1128/aem.02280-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g-1 soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g-1 soil). When eDNA was increased to 5 μg g-1 soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 109 ARGs g-1 soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern.
Collapse
|
10
|
Kloub L, Gosselin S, Fullmer M, Graf J, Gogarten JP, Bansal MS. Systematic Detection of Large-Scale Multigene Horizontal Transfer in Prokaryotes. Mol Biol Evol 2021; 38:2639-2659. [PMID: 33565580 PMCID: PMC8136488 DOI: 10.1093/molbev/msab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.
Collapse
Affiliation(s)
- Lina Kloub
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matthew Fullmer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Bioinformatics Institute, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mukul S Bansal
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
11
|
Improved Duplication-Transfer-Loss Reconciliation with Extinct and Unsampled Lineages. ALGORITHMS 2021. [DOI: 10.3390/a14080231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Duplication-Transfer-Loss (DTL) reconciliation is a widely used computational technique for understanding gene family evolution and inferring horizontal gene transfer (transfer for short) in microbes. However, most existing models and implementations of DTL reconciliation cannot account for the effect of unsampled or extinct species lineages on the evolution of gene families, likely affecting their accuracy. Accounting for the presence and possible impact of any unsampled species lineages, including those that are extinct, is especially important for inferring and studying horizontal transfer since many genes in the species lineages represented in the reconciliation analysis are likely to have been acquired through horizontal transfer from unsampled lineages. While models of DTL reconciliation that account for transfer from unsampled lineages have already been proposed, they use a relatively simple framework for transfer from unsampled lineages and cannot explicitly infer the location on the species tree of each unsampled or extinct lineage associated with an identified transfer event. Furthermore, there does not yet exist any systematic studies to assess the impact of accounting for unsampled lineages on the accuracy of DTL reconciliation. In this work, we address these deficiencies by (i) introducing an extended DTL reconciliation model, called the DTLx reconciliation model, that accounts for unsampled and extinct species lineages in a new, more functional manner compared to existing models, (ii) showing that optimal reconciliations under the new DTLx reconciliation model can be computed just as efficiently as under the fastest DTL reconciliation model, (iii) providing an efficient algorithm for sampling optimal DTLx reconciliations uniformly at random, (iv) performing the first systematic simulation study to assess the impact of accounting for unsampled lineages on the accuracy of DTL reconciliation, and (v) comparing the accuracies of inferring transfers from unsampled lineages under our new model and the only other previously proposed parsimony-based model for this problem.
Collapse
|
12
|
Feng Y, Neri U, Gosselin S, Louyakis AS, Papke RT, Gophna U, Gogarten JP. The Evolutionary Origins of Extreme Halophilic Archaeal Lineages. Genome Biol Evol 2021; 13:6320066. [PMID: 34255041 PMCID: PMC8350355 DOI: 10.1093/gbe/evab166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Uri Neri
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
13
|
Indirect identification of horizontal gene transfer. J Math Biol 2021; 83:10. [PMID: 34218334 PMCID: PMC8254804 DOI: 10.1007/s00285-021-01631-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 12/04/2022]
Abstract
Several implicit methods to infer horizontal gene transfer (HGT) focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of a graph, the later-divergence-time (LDT) graph, whose vertices correspond to genes colored by their species. We investigate these graphs in the setting of relaxed scenarios, i.e., evolutionary scenarios that encompass all commonly used variants of duplication-transfer-loss scenarios in the literature. We characterize LDT graphs as a subclass of properly vertex-colored cographs, and provide a polynomial-time recognition algorithm as well as an algorithm to construct a relaxed scenario that explains a given LDT. An edge in an LDT graph implies that the two corresponding genes are separated by at least one HGT event. The converse is not true, however. We show that the complete xenology relation is described by an rs-Fitch graph, i.e., a complete multipartite graph satisfying constraints on the vertex coloring. This class of vertex-colored graphs is also recognizable in polynomial time. We finally address the question “how much information about all HGT events is contained in LDT graphs” with the help of simulations of evolutionary scenarios with a wide range of duplication, loss, and HGT events. In particular, we show that a simple greedy graph editing scheme can be used to efficiently detect HGT events that are implicitly contained in LDT graphs.
Collapse
|
14
|
Wasser D, Borst A, Hammelmann M, Ludt K, Soppa J. Characterization of Non-selected Intermolecular Gene Conversion in the Polyploid Haloarchaeon Haloferax volcanii. Front Microbiol 2021; 12:680854. [PMID: 34177864 PMCID: PMC8223754 DOI: 10.3389/fmicb.2021.680854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Gene conversion is defined as the non-reciprocal transfer of genetic information from one site to a homologous, but not identical site of the genome. In prokaryotes, gene conversion can increase the variance of sequences, like in antigenic variation, but can also lead to a homogenization of sequences, like in the concerted evolution of multigene families. In contrast to these intramolecular mechanisms, the intermolecular gene conversion in polyploid prokaryotes, which leads to the equalization of the multiple genome copies, has hardly been studied. We have previously shown the intermolecular gene conversion in halophilic and methanogenic archaea is so efficient that it can be studied without selecting for conversion events. Here, we have established an approach to characterize unselected intermolecular gene conversion in Haloferax volcanii making use of two genes that encode enzymes involved in carotenoid biosynthesis. Heterozygous strains were generated by protoplast fusion, and gene conversion was quantified by phenotype analysis or/and PCR. It was verified that unselected gene conversion is extremely efficient and it was shown that gene conversion tracts are much longer than in antigenic variation or concerted evolution in bacteria. Two sites were nearly always co-converted when they were 600 bp apart, and more than 30% co-conversion even occurred when two sites were 5 kbp apart. The gene conversion frequency was independent from the extent of genome differences, and even a one nucleotide difference triggered conversion.
Collapse
Affiliation(s)
- Daniel Wasser
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Mathias Hammelmann
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Katharina Ludt
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| |
Collapse
|
15
|
Makkay AM, Louyakis AS, Ram-Mohan N, Gophna U, Gogarten JP, Papke RT. Insights into gene expression changes under conditions that facilitate horizontal gene transfer (mating) of a model archaeon. Sci Rep 2020; 10:22297. [PMID: 33339886 PMCID: PMC7749143 DOI: 10.1038/s41598-020-79296-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Horizontal gene transfer is a means by which bacteria, archaea, and eukaryotes are able to trade DNA within and between species. While there are a variety of mechanisms through which this genetic exchange can take place, one means prevalent in the archaeon Haloferax volcanii involves the transient formation of cytoplasmic bridges between cells and is referred to as mating. This process can result in the exchange of very large fragments of DNA between the participating cells. Genes governing the process of mating, including triggers to initiate mating, mechanisms of cell fusion, and DNA exchange, have yet to be characterized. We used a transcriptomic approach to gain a more detailed knowledge of how mating might transpire. By examining the differential expression of genes expressed in cells harvested from mating conditions on a filter over time and comparing them to those expressed in a shaking culture, we were able to identify genes and pathways potentially associated with mating. These analyses provide new insights into both the mechanisms and barriers of mating in Hfx. volcanii.
Collapse
Affiliation(s)
- Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Wade T, Rangel LT, Kundu S, Fournier GP, Bansal MS. Assessing the accuracy of phylogenetic rooting methods on prokaryotic gene families. PLoS One 2020; 15:e0232950. [PMID: 32413061 PMCID: PMC7228096 DOI: 10.1371/journal.pone.0232950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Almost all standard phylogenetic methods for reconstructing gene trees result in unrooted trees; yet, many of the most useful applications of gene trees require that the gene trees be correctly rooted. As a result, several computational methods have been developed for inferring the root of unrooted gene trees. However, the accuracy of such methods has never been systematically evaluated on prokaryotic gene families, where horizontal gene transfer is often one of the dominant evolutionary events driving gene family evolution. In this work, we address this gap by conducting a thorough comparative evaluation of five different rooting methods using large collections of both simulated and empirical prokaryotic gene trees. Our simulation study is based on 6000 true and reconstructed gene trees on 100 species and characterizes the rooting accuracy of the four methods under 36 different evolutionary conditions and 3 levels of gene tree reconstruction error. The empirical study is based on a large, carefully designed data set of 3098 gene trees from 504 bacterial species (406 Alphaproteobacteria and 98 Cyanobacteria) and reveals insights that supplement those gleaned from the simulation study. Overall, this work provides several valuable insights into the accuracy of the considered methods that will help inform the choice of rooting methods to use when studying microbial gene family evolution. Among other findings, this study identifies parsimonious Duplication-Transfer-Loss (DTL) rooting and Minimal Ancestor Deviation (MAD) rooting as two of the most accurate gene tree rooting methods for prokaryotes and specifies the evolutionary conditions under which these methods are most accurate, demonstrates that DTL rooting is highly sensitive to high evolutionary rates and gene tree error, and that rooting methods based on branch-lengths are generally robust to gene tree reconstruction error.
Collapse
Affiliation(s)
- Taylor Wade
- Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, United States of America
| | - L. Thiberio Rangel
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Soumya Kundu
- Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Gregory P. Fournier
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Mukul S. Bansal
- Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
17
|
Wang G, Zhao Z, Ke J, Engel Y, Shi YM, Robinson D, Bingol K, Zhang Z, Bowen B, Louie K, Wang B, Evans R, Miyamoto Y, Cheng K, Kosina S, De Raad M, Silva L, Luhrs A, Lubbe A, Hoyt DW, Francavilla C, Otani H, Deutsch S, Washton NM, Rubin EM, Mouncey NJ, Visel A, Northen T, Cheng JF, Bode HB, Yoshikuni Y. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat Microbiol 2019; 4:2498-2510. [PMID: 31611640 DOI: 10.1038/s41564-019-0573-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
It is generally believed that exchange of secondary metabolite biosynthetic gene clusters (BGCs) among closely related bacteria is an important driver of BGC evolution and diversification. Applying this idea may help researchers efficiently connect many BGCs to their products and characterize the products' roles in various environments. However, existing genetic tools support only a small fraction of these efforts. Here, we present the development of chassis-independent recombinase-assisted genome engineering (CRAGE), which enables single-step integration of large, complex BGC constructs directly into the chromosomes of diverse bacteria with high accuracy and efficiency. To demonstrate the efficacy of CRAGE, we expressed three known and six previously identified but experimentally elusive non-ribosomal peptide synthetase (NRPS) and NRPS-polyketide synthase (PKS) hybrid BGCs from Photorhabdus luminescens in 25 diverse γ-Proteobacteria species. Successful activation of six BGCs identified 22 products for which diversity and yield were greater when the BGCs were expressed in strains closely related to the native strain than when they were expressed in either native or more distantly related strains. Activation of these BGCs demonstrates the feasibility of exploiting their underlying catalytic activity and plasticity, and provides evidence that systematic approaches based on CRAGE will be useful for discovering and identifying previously uncharacterized metabolites.
Collapse
Affiliation(s)
- Gaoyan Wang
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Jing Ke
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yvonne Engel
- Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Yi-Ming Shi
- Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - David Robinson
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Kerem Bingol
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zheyun Zhang
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Benjamin Bowen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Bing Wang
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Robert Evans
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yu Miyamoto
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Kelly Cheng
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Suzanne Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus De Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Leslie Silva
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | | | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Deutsch
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nancy M Washton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward M Rubin
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent Northen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Helge B Bode
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA. .,LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, USA. .,Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
18
|
|
19
|
Abstract
Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations. Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.
Collapse
|
20
|
Lassalle F, Planel R, Penel S, Chapulliot D, Barbe V, Dubost A, Calteau A, Vallenet D, Mornico D, Bigot T, Guéguen L, Vial L, Muller D, Daubin V, Nesme X. Ancestral Genome Estimation Reveals the History of Ecological Diversification in Agrobacterium. Genome Biol Evol 2018; 9:3413-3431. [PMID: 29220487 PMCID: PMC5739047 DOI: 10.1093/gbe/evx255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is considered as a major source of innovation in bacteria, and as such is expected to drive adaptation to new ecological niches. However, among the many genes acquired through HGT along the diversification history of genomes, only a fraction may have actively contributed to sustained ecological adaptation. We used a phylogenetic approach accounting for the transfer of genes (or groups of genes) to estimate the history of genomes in Agrobacterium biovar 1, a diverse group of soil and plant-dwelling bacterial species. We identified clade-specific blocks of cotransferred genes encoding coherent biochemical pathways that may have contributed to the evolutionary success of key Agrobacterium clades. This pattern of gene coevolution rejects a neutral model of transfer, in which neighboring genes would be transferred independently of their function and rather suggests purifying selection on collectively coded acquired pathways. The acquisition of these synapomorphic blocks of cofunctioning genes probably drove the ecological diversification of Agrobacterium and defined features of ancestral ecological niches, which consistently hint at a strong selective role of host plant rhizospheres.
Collapse
Affiliation(s)
- Florent Lassalle
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France.,Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Rémi Planel
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Simon Penel
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - David Chapulliot
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France
| | - Audrey Dubost
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Alexandra Calteau
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - David Vallenet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - Damien Mornico
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - Thomas Bigot
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Laurent Guéguen
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Ludovic Vial
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Daniel Muller
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Vincent Daubin
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Xavier Nesme
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| |
Collapse
|
21
|
de la Haba RR, Corral P, Sánchez-Porro C, Infante-Domínguez C, Makkay AM, Amoozegar MA, Ventosa A, Papke RT. Genotypic and Lipid Analyses of Strains From the Archaeal Genus Halorubrum Reveal Insights Into Their Taxonomy, Divergence, and Population Structure. Front Microbiol 2018; 9:512. [PMID: 29662474 PMCID: PMC5890160 DOI: 10.3389/fmicb.2018.00512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
To gain a better understanding of how divergence occurs, and how taxonomy can benefit from studying natural populations, we isolated and examined 25 closely related Halorubrum strains obtained from different hypersaline communities and compared them to validly named species and other reference strains using five taxonomic study approaches: phylogenetic analysis using the 16S rRNA gene and multilocus sequencing analysis (MLSA), polar lipid profiles (PLP), average nucleotide identity (ANI) and DNA-DNA hybridization (DDH). 16S rRNA gene sequence could not differentiate the newly isolated strains from described species, while MLSA grouped strains into three major clusters. Two of those MLSA clusters distinguished candidates for new species. The third cluster with concatenated sequence identity equal to or greater than 97.5% was comprised of strains from Aran-Bidgol Lake (Iran) and solar salterns in Namibia and Spain, and two previously described species isolated from Mexico and Algeria. PLP and DDH analyses showed that Aran-Bidgol strains formed uniform populations, and that strains isolated from other geographic locations were heterogeneous and divergent, indicating that they may constitute different species. Therefore, applying only sequencing approaches and similarity cutoffs for circumscribing species may be too conservative, lumping concealed diversity into a single taxon. Further, our data support the interpretation that local populations experience unique evolutionary homogenization pressures, and once relieved of insular constraints (e.g., through migration) are free to diverge.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Carmen Infante-Domínguez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Andrea M. Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Mohammad A. Amoozegar
- Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
22
|
Shalev Y, Soucy SM, Papke RT, Gogarten JP, Eichler J, Gophna U. Comparative Analysis of Surface Layer Glycoproteins and Genes Involved in Protein Glycosylation in the Genus Haloferax. Genes (Basel) 2018; 9:genes9030172. [PMID: 29558455 PMCID: PMC5867893 DOI: 10.3390/genes9030172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022] Open
Abstract
Within the Haloferax genus, both the surface (S)-layer protein, and the glycans that can decorate it, vary between species, which can potentially result in many different surface types, analogous to bacterial serotypes. This variation may mediate phenotypes, such as sensitivity to different viruses and mating preferences. Here, we describe S-layer glycoproteins found in multiple Haloferax strains and perform comparative genomics analyses of major and alternative glycosylation clusters of isolates from two coastal sites. We analyze the phylogeny of individual glycosylation genes and demonstrate that while the major glycosylation cluster tends to be conserved among closely related strains, the alternative cluster is highly variable. Thus, geographically- and genetically-related strains may exhibit diverse surface structures to such an extent that no two isolates present an identical surface profile.
Collapse
Affiliation(s)
- Yarden Shalev
- School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shannon M Soucy
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - J Peter Gogarten
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 8410501, Israel.
| | - Uri Gophna
- School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, Albers SV. Mechanisms of gene flow in archaea. Nat Rev Microbiol 2017; 15:492-501. [DOI: 10.1038/nrmicro.2017.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Correlated Mutations and Homologous Recombination Within Bacterial Populations. Genetics 2016; 205:891-917. [PMID: 28007887 DOI: 10.1534/genetics.116.189621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Inferring the rate of homologous recombination within a bacterial population remains a key challenge in quantifying the basic parameters of bacterial evolution. Due to the high sequence similarity within a clonal population, and unique aspects of bacterial DNA transfer processes, detecting recombination events based on phylogenetic reconstruction is often difficult, and estimating recombination rates using coalescent model-based methods is computationally expensive, and often infeasible for large sequencing data sets. Here, we present an efficient solution by introducing a set of mutational correlation functions computed using pairwise sequence comparison, which characterize various facets of bacterial recombination. We provide analytical expressions for these functions, which precisely recapitulate simulation results of neutral and adapting populations under different coalescent models. We used these to fit correlation functions measured at synonymous substitutions using whole-genome data on Escherichia coli and Streptococcus pneumoniae populations. We calculated and corrected for the effect of sample selection bias, i.e., the uneven sampling of individuals from natural microbial populations that exists in most datasets. Our method is fast and efficient, and does not employ phylogenetic inference or other computationally intensive numerics. By simply fitting analytical forms to measurements from sequence data, we show that recombination rates can be inferred, and the relative ages of different samples can be estimated. Our approach, which is based on population genetic modeling, is broadly applicable to a wide variety of data, and its computational efficiency makes it particularly attractive for use in the analysis of large sequencing datasets.
Collapse
|
25
|
Impact of a homing intein on recombination frequency and organismal fitness. Proc Natl Acad Sci U S A 2016; 113:E4654-61. [PMID: 27462108 DOI: 10.1073/pnas.1606416113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel's Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.
Collapse
|
26
|
Ruhe ZC, Nguyen JY, Chen AJ, Leung NY, Hayes CS, Low DA. CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism. PLoS Genet 2016; 12:e1006145. [PMID: 27355474 PMCID: PMC4927057 DOI: 10.1371/journal.pgen.1006145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are widespread amongst Gram-negative bacteria where they play important roles in inter-cellular competition and biofilm formation. CDI+ bacteria use cell-surface CdiA proteins to bind neighboring bacteria and deliver C-terminal toxin domains. CDI+ cells also express CdiI immunity proteins that specifically neutralize toxins delivered from adjacent siblings. Genomic analyses indicate that cdi loci are commonly found on plasmids and genomic islands, suggesting that these Type 5 secretion systems are spread through horizontal gene transfer. Here, we examine whether CDI toxin and immunity activities serve to stabilize mobile genetic elements using a minimal F plasmid that fails to partition properly during cell division. This F plasmid is lost from Escherichia coli populations within 50 cell generations, but is maintained in ~60% of the cells after 100 generations when the plasmid carries the cdi gene cluster from E. coli strain EC93. By contrast, the ccdAB "plasmid addiction" module normally found on F exerts only a modest stabilizing effect. cdi-dependent plasmid stabilization requires the BamA receptor for CdiA, suggesting that plasmid-free daughter cells are inhibited by siblings that retain the CDI+ plasmid. In support of this model, the CDI+ F plasmid is lost rapidly from cells that carry an additional cdiI immunity gene on a separate plasmid. These results indicate that plasmid stabilization occurs through elimination of non-immune cells arising in the population via plasmid loss. Thus, genetic stabilization reflects a strong selection for immunity to CDI. After long-term passage for more than 300 generations, CDI+ plasmids acquire mutations that increase copy number and result in 100% carriage in the population. Together, these results show that CDI stabilizes genetic elements through a toxin-mediated surveillance mechanism in which cells that lose the CDI system are detected and eliminated by their siblings.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Annette J Chen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Nicole Y Leung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
27
|
Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109:565-87. [PMID: 26837779 DOI: 10.1007/s10482-016-0660-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
The evolutionary interrelationships between the archaeal organisms which comprise the class Halobacteria have proven difficult to elucidate using traditional phylogenetic tools. The class currently contains three orders. However, little is known about the family level relationships within these orders. In this work, we have completed a comprehensive comparative analysis of 129 sequenced genomes from members of the class Halobacteria in order to identify shared molecular characteristics, in the forms of conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can provide reliable evidence, independent of phylogenetic trees, that the species from the groups in which they are found are specifically related to each other due to common ancestry. Here we present 20 CSIs and 31 CSPs which are unique characteristics of infra-order level groups of genera within the class Halobacteria. We also present 40 CSIs and 234 CSPs which are characteristic of Haloarcula, Halococcus, Haloferax, or Halorubrum. Importantly, the CSIs and CSPs identified here provide evidence that the order Haloferacales contains two main groups, one consisting of Haloferax and related genera supported by four CSIs and five CSPs and the other consisting of Halorubrum and related genera supported by four CSPs. We have also identified molecular characteristics that suggest that the polyphyletic order Halobacteriales contains at least two large monophyletic clusters of organisms in addition to the polyphyletic members of the order, one cluster consisting of Haloarcula and related genera supported by ten CSIs and nineteen CSPs and the other group consisting of the members of the genus Halococcus supported by nine CSIs and 23 CSPs. We have also produced a highly robust phylogenetic tree based on the concatenated sequences of 766 proteins which provide additional support for the relationships identified by the CSIs and CSPs. On the basis of the phylogenetic analyses and the identified conserved molecular characteristics presented here, we propose a division of the order Haloferacales into two families, an emended family Haloferacaceae and Halorubraceae fam. nov. and a division of the order Halobacteriales into three families, an emended family Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Reena Fabros
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
28
|
Lassalle F, Muller D, Nesme X. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 2015; 166:729-41. [DOI: 10.1016/j.resmic.2015.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
|
29
|
Abstract
Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent-offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.
Collapse
|
30
|
Syutkin AS, Pyatibratov MG, Fedorov OV. Flagella of halophilic archaea: differences in supramolecular organization. BIOCHEMISTRY (MOSCOW) 2015; 79:1470-82. [PMID: 25749160 DOI: 10.1134/s0006297914130033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Archaeal flagella are similar functionally to bacterial flagella, but structurally they are completely different. Helical archaeal flagellar filaments are formed of protein subunits called flagellins (archaellins). Notwithstanding progress in studies of archaeal flagella achieved in recent years, many problems in this area are still unsolved. In this review, we analyze the formation of these supramolecular structures by the example of flagellar filaments of halophilic archaea. Recent data on the structure of the flagellar filaments demonstrate that their supramolecular organization differs considerably in different haloarchaeal species.
Collapse
Affiliation(s)
- A S Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
31
|
Abstract
What are species? How do they arise? These questions are not easy to answer and have been particularly controversial in microbiology. Yet, for those microbiologists studying environmental questions or dealing with clinical issues, the ability to name and recognize species, widely considered the fundamental units of ecology, can be practically useful. On a more fundamental level, the speciation problem, the focus here, is more mechanistic and conceptual. What is the origin of microbial species, and what evolutionary and ecological mechanisms keep them separate once they begin to diverge? To what extent are these mechanisms universal across diverse types of microbes, and more broadly across the entire the tree of life? Here, we propose that microbial speciation must be viewed in light of gene flow, which defines units of genetic similarity, and of natural selection, which defines units of phenotype and ecological function. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and population genomics studies. These studies suggest a continuous "speciation spectrum," which microbial populations traverse in different ways depending on their balance of gene flow and natural selection.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
32
|
Borjian F, Han J, Hou J, Xiang H, Berg IA. The methylaspartate cycle in haloarchaea and its possible role in carbon metabolism. ISME JOURNAL 2015; 10:546-57. [PMID: 26241502 DOI: 10.1038/ismej.2015.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/17/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022]
Abstract
Haloarchaea (class Halobacteria) live in extremely halophilic conditions and evolved many unique metabolic features, which help them to adapt to their environment. The methylaspartate cycle, an anaplerotic acetate assimilation pathway recently proposed for Haloarcula marismortui, is one of these special adaptations. In this cycle, acetyl-CoA is oxidized to glyoxylate via methylaspartate as a characteristic intermediate. The following glyoxylate condensation with another molecule of acetyl-CoA yields malate, a starting substrate for anabolism. The proposal of the functioning of the cycle was based mainly on in vitro data, leaving several open questions concerning the enzymology involved and the occurrence of the cycle in halophilic archaea. Using gene deletion mutants of H. hispanica, enzyme assays and metabolite analysis, we now close these gaps by unambiguous identification of the genes encoding all characteristic enzymes of the cycle. Based on these results, we were able to perform a solid study of the distribution of the methylaspartate cycle and the alternative acetate assimilation strategy, the glyoxylate cycle, among haloarchaea. We found that both of these cycles are evenly distributed in haloarchaea. Interestingly, 83% of the species using the methylaspartate cycle possess also the genes for polyhydroxyalkanoate biosynthesis, whereas only 34% of the species with the glyoxylate cycle are capable to synthesize this storage compound. This finding suggests that the methylaspartate cycle is shaped for polyhydroxyalkanoate utilization during carbon starvation, whereas the glyoxylate cycle is probably adapted for growth on substrates metabolized via acetyl-CoA.
Collapse
Affiliation(s)
- Farshad Borjian
- Mikrobiologie, Fakultät Biologie, Universität Freiburg, Freiburg, Germany
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Hou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ivan A Berg
- Mikrobiologie, Fakultät Biologie, Universität Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 2015; 25:80-7. [PMID: 26056770 DOI: 10.1016/j.mib.2015.05.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Recent studies based on metagenomics and other molecular techniques have permitted a detailed knowledge of the microbial diversity and metabolic activities of microorganisms in hypersaline environments. The current accepted model of community structure in hypersaline environments is that the square archaeon Haloquadratum waslbyi, the bacteroidete Salinibacter ruber and nanohaloarchaea are predominant members at higher salt concentrations, while more diverse archaeal and bacterial taxa are observed in habitats with intermediate salinities. Additionally, metagenomic studies may provide insight into the isolation and characterization of the principal microbes in these habitats, such as the recently described gammaproteobacterium Spiribacter salinus.
Collapse
Affiliation(s)
- Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 06269 Storrs, CT, USA
| |
Collapse
|
34
|
Infante-Domínguez C, Corral P, Sánchez-Porro C, Ventosa A. Halovenus salina sp. nov., an extremely halophilic archaeon isolated from a saltern. Int J Syst Evol Microbiol 2015; 65:3016-3023. [PMID: 26040580 DOI: 10.1099/ijs.0.000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extremely halophilic archaeon was isolated from a water sample of Isla Bacuta saltern in Huelva, Spain. Strain ASP54(T) is a novel red-pigmented, motile, rod-shaped, Gram-stain-negative and strictly aerobic haloarchaeon. Strain ASP54(T) grew in media containing 15-30% (w/v) salts and optimally with 25% (w/v) salts. It grew between pH 5.0 and 9.0 (optimally at pH 7.5) and at 20-40 °C (optimally at 37 °C). Phylogenetic analysis based on multi-locus sequence analysis (MLSA) and the comparison of 16S rRNA gene sequences revealed that strain ASP54(T) is most closely related to the genus Halovenus. The closest relatives were Halovenus aranensis EB27(T) (92.1% 16S rRNA gene sequence similarity), Halorientalis regularis TNN28(T) (92.1%), and Halorientalis persicus D108(T) (92.0%). The polar lipid pattern of strain ASP54(T) consisted of biphosphatidylglycerol, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and a minor-phospholipid. The predominant respiratory quinone was menaquinone-8 (MK-8) (83%), and a minor amount of MK-8(VIII-H2) (17%) was also detected. The G+C content of the genomic DNA of this strain was 63.1 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data presented in this study, strain ASP54(T) represents a novel species of the genus Halovenus, for which the name Halovenus salina sp. nov. is proposed. The type strain is ASP54(T) ( = CEC(T) 8749(T) = IBRC-M 10946(T) = JCM 30072(T)).
Collapse
Affiliation(s)
- Carmen Infante-Domínguez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Paulina Corral
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
35
|
Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C, Makkay A, Ventosa A. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 2015; 5:1405-26. [PMID: 25997110 PMCID: PMC4500145 DOI: 10.3390/life5021405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.
Collapse
Affiliation(s)
- R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Paulina Corral
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Nikhil Ram-Mohan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Andrea Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| |
Collapse
|
36
|
Corral P, de la Haba RR, Sánchez-Porro C, Amoozegar MA, Papke RT, Ventosa A. Halorubrum persicum sp. nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol 2015; 65:1770-1778. [PMID: 25744586 DOI: 10.1099/ijs.0.000175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extremely halophilic archaeon belonging to the genus Halorubrum, strain C49T, was isolated from sediment of the hypersaline lake Aran-Bidgol in Iran. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain C49T was closely related to Halorubrum saccharovorum JCM 8865T (99.5 %) and other species of the genus Halorubrum. Studies based on multilocus sequence analysis revealed that strain C49T is placed among the species of Halorubrum; the strain constituted a defined branch in comparison with the type strains of species of Halorubrum, while the 16S rRNA gene sequence divergence could not define the status of the newly isolated strain. For optimum growth, strain C49T required 20 % (w/v) salts at pH 7.0 and 37 °C under aerobic conditions. Mg2+ was not required. The cells were pleomorphic rods, motile and stained Gram-variable. Colonies of the strain were pink. Hypotonic treatment with <12 % NaCl provoked cell lysis. The polar lipid pattern of strain C49T consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester derived from both C20C20 and C20C25 archaeol, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The DNA G+C content was 64.2 mol%. DNA-DNA hybridization studies and average nucleotide identity confirmed that strain C49T constitutes a distinct genospecies. Data obtained in this study show that strain C49T represents a novel species, for which the name Halorubrum persicum sp. nov. is proposed. The type strain is C49T ( = IBRC-M 10232T = JCM 30541T).
Collapse
Affiliation(s)
- Paulina Corral
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Mohammad Ali Amoozegar
- Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
37
|
Thiergart T, Landan G, Martin WF. Concatenated alignments and the case of the disappearing tree. BMC Evol Biol 2014; 14:266. [PMID: 25547755 PMCID: PMC4302582 DOI: 10.1186/s12862-014-0266-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/11/2014] [Indexed: 12/05/2022] Open
Abstract
Background Analyzed individually, gene trees for a given taxon set tend to harbour incongruent or conflicting signals. One popular approach to deal with this circumstance is to use concatenated data. But especially in prokaryotes, where lateral gene transfer (LGT) is a natural mechanism of generating genetic diversity, there are open questions as to whether concatenation amplifies or averages phylogenetic signals residing in individual genes. Here we investigate concatenations of prokaryotic and eukaryotic datasets to investigate possible sources of incongruence in phylogenetic trees and to examine the level of overlap between individual and concatenated alignments. Results We analyzed prokaryotic datasets comprising 248 invidual gene trees from 315 genomes at three taxonomic depths spanning gammaproteobacteria, proteobacteria, and prokaryotes (bacteria plus archaea), and eukaryotic datasets comprising 279 invidual gene trees from 85 genomes at two taxonomic depths: across plants-animals-fungi and within fungi. Consistent with previous findings, the branches in trees made from concatenated alignments are, in general, not supported by any of their underlying individual gene trees, even though the concatenation trees tend to possess high bootstrap proportions values. For the prokaryote data, this observation is independent of phylogenetic depth and sequence conservation. The eukaryotic data show much better agreement between concatenation and single gene trees. LGT frequencies in trees were estimated using established methods. Sequence length in individual alignments, but not sequence divergence, was found to correlate with the generation of branches that correspond to the concatenated tree. Conclusions The weak correspondence of concatenation trees with single gene trees gives rise to the question where the phylogenetic signal in concatenated trees is coming from. The eukaryote data reveals a better correspondence between individual and concatenation trees than the prokaryote data. The question of whether the lack of correspondence between individual genes and the concatenation tree in the prokaryotic data is due to LGT or phylogenetic artefacts remains unanswered. If LGT is the cause of incongruence between concatenation and individual trees, we would have expected to see greater degrees of incongruence for more divergent prokaryotic data sets, which was not observed, although estimated rates of LGT suggest that LGT is responsible for at least some of the observed incongruence. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0266-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thorsten Thiergart
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Giddy Landan
- Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
38
|
Luk AWS, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life (Basel) 2014; 4:681-715. [PMID: 25402735 PMCID: PMC4284463 DOI: 10.3390/life4040681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022] Open
Abstract
In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.
Collapse
Affiliation(s)
- Alison W S Luk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
39
|
Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 2014; 517:77-80. [PMID: 25317564 PMCID: PMC4285555 DOI: 10.1038/nature13805] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/28/2014] [Indexed: 01/28/2023]
Abstract
The mechanisms that underlie the origin of major prokaryotic groups are poorly understood. In principle, the origin of both species and higher taxa among prokaryotes should entail similar mechanisms — ecological interactions with the environment paired with natural genetic variation involving lineage-specific gene innovations and lineage-specific gene acquisitions1,2,3,4. To investigate the origin of higher taxa in archaea, we have determined gene distributions and gene phylogenies for the 267,568 protein coding genes of 134 sequenced archaeal genomes in the context of their homologs from 1,847 reference bacterial genomes. Archaea-specific gene families define 13 traditionally recognized archaeal higher taxa in our sample. Here we report that the origins of these 13 groups unexpectedly correspond to 2,264 group-specific gene acquisitions from bacteria. Interdomain gene transfer is highly asymmetric, transfers from bacteria to archaea are more than 5-fold more frequent than vice versa. Gene transfers identified at major evolutionary transitions among prokaryotes specifically implicate gene acquisitions for metabolic functions from bacteria as key innovations in the origin of higher archaeal taxa.
Collapse
|
40
|
Soucy SM, Fullmer MS, Papke RT, Gogarten JP. Inteins as indicators of gene flow in the halobacteria. Front Microbiol 2014; 5:299. [PMID: 25018750 PMCID: PMC4071816 DOI: 10.3389/fmicb.2014.00299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group.
Collapse
Affiliation(s)
- Shannon M Soucy
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Matthew S Fullmer
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | | |
Collapse
|
41
|
DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One 2014; 9:e94819. [PMID: 24733558 PMCID: PMC3986227 DOI: 10.1371/journal.pone.0094819] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/19/2014] [Indexed: 11/24/2022] Open
Abstract
Haloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx. volcanii is polyploid, it was investigated whether DNA might be used as storage polymer, in addition to its role as genetic material. It could be verified that during phosphate starvation cells multiply by distributing as well as by degrading their chromosomes. In contrast, the number of ribosomes stayed constant, revealing that ribosomes are distributed to descendant cells, but not degraded. These results suggest that the phosphate of phosphate-containing biomolecules (other than DNA and RNA) originates from that stored in DNA, not in rRNA. Adding phosphate to chromosome depleted cells rapidly restores polyploidy. Quantification of desiccation survival of cells with different ploidy levels showed that under phosphate starvation Hfx. volcanii diminishes genetic advantages of polyploidy in favor of cell multiplication. The consequences of the usage of genomic DNA as phosphate storage polymer are discussed as well as the hypothesis that DNA might have initially evolved in evolution as a storage polymer, and the various genetic benefits evolved later.
Collapse
|
42
|
Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R, Ventosa A, Gogarten JP, Papke RT. Population and genomic analysis of the genus Halorubrum. Front Microbiol 2014; 5:140. [PMID: 24782836 PMCID: PMC3990103 DOI: 10.3389/fmicb.2014.00140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations.
Collapse
Affiliation(s)
- Matthew S. Fullmer
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Shannon M. Soucy
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Kristen S. Swithers
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale UniversityNew Haven, CT, USA
| | - Andrea M. Makkay
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Ryan Wheeler
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of SevilleSeville, Spain
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - R. Thane Papke
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
43
|
Ram Mohan N, Fullmer MS, Makkay AM, Wheeler R, Ventosa A, Naor A, Gogarten JP, Papke RT. Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations. Front Microbiol 2014; 5:143. [PMID: 24782838 PMCID: PMC3988388 DOI: 10.3389/fmicb.2014.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/19/2014] [Indexed: 01/29/2023] Open
Abstract
Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions.
Collapse
Affiliation(s)
- Nikhil Ram Mohan
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Matthew S Fullmer
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Ryan Wheeler
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of Seville Seville, Spain
| | - Adit Naor
- Molecular Microbiology and Biotechnology, Tel Aviv University Tel Aviv, Israel
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
44
|
Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol 2014; 22:235-47. [PMID: 24630527 DOI: 10.1016/j.tim.2014.02.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
We propose that microbial diversity must be viewed in light of gene flow and selection, which define units of genetic similarity, and of phenotype and ecological function, respectively. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and on evidence from some of the first microbial populations studied with genomics. These show that if recombination is frequent and selection moderate, ecologically adaptive mutations or genes can spread within populations independently of their original genomic background (gene-specific sweeps). Alternatively, if the effect of recombination is smaller than selection, genome-wide selective sweeps should occur. In both cases, however, distinct units of overlapping ecological and genotypic similarity will form if microgeographic separation, likely involving ecological tradeoffs, induces barriers to gene flow. These predictions are supported by (meta)genomic data, which suggest that a 'reverse ecology' approach, in which genomic and gene flow information is used to make predictions about the nature of ecological units, is a powerful approach to ordering microbial diversity.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Haloarcula marismortui archaellin genes as ecoparalogs. Extremophiles 2013; 18:341-9. [PMID: 24368632 DOI: 10.1007/s00792-013-0619-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/05/2013] [Indexed: 01/11/2023]
Abstract
The genome of haloarchaeon Haloarcula marismortui contains two archaellin genes-flaA2 and flaB. Earlier we isolated and characterized two H. marismortui strains in that archaella consisting of FlaA2 archaellin (with a minor FlaB fraction) or of FlaB only. Both the FlaA2 and FlaB strains were motile and produced functional helical archaella. Thus, it may seem that the FlaA2 archaellin is redundant. In this study we investigated the biological roles of archaellin redundancy and demonstrated that FlaA2 archaellin is better adapted to more severe conditions of high temperature/low salinity, while FlaB has an advantage with increasing salinity. We used the thermodynamic data and bioinformatics sequence analysis to demonstrate that archaella formed by FlaA2 are more stable than those formed by FlaB. Our combined data indicate that the monomer FlaA2 archaellin is more flexible and leads to more compact and stable formation of filamentous structures. The difference in response to environmental stress indicates that FlaA2 and FlaB replace each other under different environmental conditions and can be considered as ecoparalogs.
Collapse
|
46
|
Warnecke T, Becker EA, Facciotti MT, Nislow C, Lehner B. Conserved substitution patterns around nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning through evolution. PLoS Comput Biol 2013; 9:e1003373. [PMID: 24278010 PMCID: PMC3836710 DOI: 10.1371/journal.pcbi.1003373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/13/2013] [Indexed: 11/21/2022] Open
Abstract
Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers) from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change. Genome sequences as well as epigenetic states, such as DNA methylation or nucleosome binding patterns, change during evolution. But what is the causal relationship between the two? We already know that nucleotide variation within and between species is distributed unevenly around nucleosome footprints, but does this mean that sequence evolution follows a biased course because the presence of nucleosomes affects mutation and DNA repair dynamics? Or is it, in fact, the other way around, i.e. changes happen at the DNA level and prompt shifts in nucleosome positioning? To investigate the direction of causality in genetic versus epigenetic evolution, we analyze substitutions patterns in eukaryotes as well as the archaeon Haloferax volcanii in the context of genome-wide nucleosome binding maps. We demonstrate that the relationship between nucleosome positions and between-species divergence patterns, strikingly similar in eukaryotes and archaea, can be explained in large parts by nucleosomes shifting positions in response to substitution, although both mutation and selection biases might still exist. Our results illustrate that it is important to consider the direction of causality between epigenetic and genetic change when analyzing patterns of sequence divergence and using sequence conservation to infer selection on epigenetic states.
Collapse
Affiliation(s)
- Tobias Warnecke
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail:
| | - Erin A. Becker
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Marc T. Facciotti
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
- Genome Center, University of California, Davis, Davis, California, United States of America
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Lehner
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain
| |
Collapse
|
47
|
High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci U S A 2013; 110:16939-44. [PMID: 24082106 DOI: 10.1073/pnas.1307090110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.
Collapse
|