1
|
Maniatis A, Rizopoulou D, Shaukat AN, Grafanaki K, Stamatopoulou V, Stathopoulos C. Vault Particles in Cancer Progression, Multidrug Resistance, and Drug Delivery: Current Insights and Future Applications. Int J Mol Sci 2025; 26:1562. [PMID: 40004027 PMCID: PMC11855390 DOI: 10.3390/ijms26041562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Vault particles (VPs) are highly conserved large ribonucleoprotein complexes found exclusively in eukaryotes. They play critical roles in various cellular processes, but their involvement in cancer progression and multidrug resistance (MDR) is the most extensively studied. VPs are composed of the major vault protein (MVP), vault RNAs (vtRNAs), vault poly (ADP-ribose) polymerase, and telomerase-associated protein-1. These components are involved in the regulation of signaling pathways that affect tumor survival, proliferation, and metastasis. MVP has been associated with aggressive tumor phenotypes, while vtRNAs modulate cell proliferation, apoptosis, and autophagy. VPs also contribute to MDR by sequestering chemotherapeutic agents, altering their accumulation in the nucleus, and regulating lysosomal dynamics. Furthermore, small vault RNA-derived fragments participate in gene silencing and intercellular communication, reinforcing the role of precursors of vtRNAs in cancer development. Beyond their biological roles, VPs present a promising platform for drug delivery, due to their unique ability to encapsulate a wide range of biomolecules and therapeutic agents, followed by controlled release. This review compiles data from PubMed and Scopus, with a literature search conducted up until December 2024, highlighting current knowledge regarding VPs and their crucial involvement in cancer-related mechanisms and their applications in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.M.); (D.R.); (A.-N.S.); (K.G.); (V.S.)
| | - Dimitra Rizopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.M.); (D.R.); (A.-N.S.); (K.G.); (V.S.)
| | - Athanasios-Nasir Shaukat
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.M.); (D.R.); (A.-N.S.); (K.G.); (V.S.)
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.M.); (D.R.); (A.-N.S.); (K.G.); (V.S.)
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vassiliki Stamatopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.M.); (D.R.); (A.-N.S.); (K.G.); (V.S.)
| | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.M.); (D.R.); (A.-N.S.); (K.G.); (V.S.)
| |
Collapse
|
2
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
3
|
Mohanty S, Jagannathan L, Ganguli G, Padhi A, Roy D, Alaridah N, Saha P, Nongthomba U, Godaly G, Gopal RK, Banerjee S, Sonawane A. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem 2015; 290:13321-43. [PMID: 25825498 DOI: 10.1074/jbc.m114.598482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Collapse
Affiliation(s)
- Soumitra Mohanty
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Lakshmanan Jagannathan
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India, the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Avinash Padhi
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Debasish Roy
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nader Alaridah
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Pratip Saha
- the Bioinformatics Center, Indian Institute of Science, Bangalore, Karnataka 560012, India, and
| | - Upendra Nongthomba
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gabriela Godaly
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Ramesh Kumar Gopal
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Sulagna Banerjee
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India, the Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | - Avinash Sonawane
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India,
| |
Collapse
|
4
|
The case for an early biological origin of DNA. J Mol Evol 2014; 79:204-12. [PMID: 25425102 PMCID: PMC4247479 DOI: 10.1007/s00239-014-9656-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
All life generates deoxyribonucleotides, the building blocks of DNA, via ribonucleotide reductases (RNRs). The complexity of this reaction suggests it did not evolve until well after the advent of templated protein synthesis, which in turn suggests DNA evolved later than both RNA and templated protein synthesis. However, deoxyribonucleotides may have first been synthesised via an alternative, chemically simpler route—the reversal of the deoxyriboaldolase (DERA) step in deoxyribonucleotide salvage. In light of recent work demonstrating that this reaction can drive synthesis of deoxyribonucleosides, we consider what pressures early adoption of this pathway would have placed on cell metabolism. This in turn provides a rationale for the replacement of DERA-dependent DNA production by RNR-dependent production.
Collapse
|
6
|
Daly TK, Sutherland-Smith AJ, Penny D. In silico resurrection of the major vault protein suggests it is ancestral in modern eukaryotes. Genome Biol Evol 2013; 5:1567-83. [PMID: 23887922 PMCID: PMC3762200 DOI: 10.1093/gbe/evt113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vaults are very large oligomeric ribonucleoproteins conserved among a variety of species. The rat vault 3D structure shows an ovoid oligomeric particle, consisting of 78 major vault protein monomers, each of approximately 861 amino acids. Vaults are probably the largest ribonucleoprotein structures in eukaryote cells, being approximately 70 nm in length with a diameter of 40 nm—the size of three ribosomes and with a lumen capacity of 50 million Å3. We use both protein sequences and inferred ancestral sequences for in silico virtual resurrection of tertiary and quaternary structures to search for vaults in a wide variety of eukaryotes. We find that the vault’s phylogenetic distribution is widespread in eukaryotes, but is apparently absent in some notable model organisms. Our conclusion from the distribution of vaults is that they were present in the last eukaryote common ancestor but they have apparently been lost from a number of groups including fungi, insects, and probably plants. Our approach of inferring ancestral 3D and quaternary structures is expected to be useful generally.
Collapse
Affiliation(s)
- Toni K Daly
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|