1
|
Yuan X, Kadowaki T. Protein subcellular relocalization and function of duplicated flagellar calcium binding protein genes in honey bee trypanosomatid parasite. PLoS Genet 2024; 20:e1011195. [PMID: 38437202 PMCID: PMC10939215 DOI: 10.1371/journal.pgen.1011195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/14/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
The honey bee trypanosomatid parasite, Lotmaria passim, contains two genes that encode the flagellar calcium binding protein (FCaBP) through tandem duplication in its genome. FCaBPs localize in the flagellum and entire body membrane of L. passim through specific N-terminal sorting sequences. This finding suggests that this is an example of protein subcellular relocalization resulting from gene duplication, altering the intracellular localization of FCaBP. However, this phenomenon may not have occurred in Leishmania, as one or both of the duplicated genes have become pseudogenes. Multiple copies of the FCaBP gene are present in several Trypanosoma species and Leptomonas pyrrhocoris, indicating rapid evolution of this gene in trypanosomatid parasites. The N-terminal flagellar sorting sequence of L. passim FCaBP1 is in close proximity to the BBSome complex, while that of Trypanosoma brucei FCaBP does not direct GFP to the flagellum in L. passim. Deletion of the two FCaBP genes in L. passim affected growth and impaired flagellar morphogenesis and motility, but it did not impact host infection. Therefore, FCaBP represents a duplicated gene with a rapid evolutionary history that is essential for flagellar structure and function in a trypanosomatid parasite.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, China
| |
Collapse
|
2
|
Costello R, Emms DM, Kelly S. Gene Duplication Accelerates the Pace of Protein Gain and Loss from Plant Organelles. Mol Biol Evol 2021; 37:969-981. [PMID: 31750917 PMCID: PMC7086175 DOI: 10.1093/molbev/msz275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Organelle biogenesis and function is dependent on the concerted action of both organellar-encoded (if present) and nuclear-encoded proteins. Differences between homologous organelles across the Plant Kingdom arise, in part, as a result of differences in the cohort of nuclear-encoded proteins that are targeted to them. However, neither the rate at which differences in protein targeting accumulate nor the evolutionary consequences of these changes are known. Using phylogenomic approaches coupled to ancestral state estimation, we show that the plant organellar proteome has diversified in proportion with molecular sequence evolution such that the proteomes of plant chloroplasts and mitochondria lose or gain on average 3.6 proteins per million years. We further demonstrate that changes in organellar protein targeting are associated with an increase in the rate of molecular sequence evolution and that such changes predominantly occur in genes with regulatory rather than metabolic functions. Finally, we show that gain and loss of protein target signals occurs at a higher rate following gene duplication, revealing that gene and genome duplication are a key facilitator of plant organelle evolution.
Collapse
Affiliation(s)
- Rona Costello
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Origin and diversification of the cardiolipin biosynthetic pathway in the Eukarya domain. Biochem Soc Trans 2020; 48:1035-1046. [DOI: 10.1042/bst20190967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are important anionic phospholipids widely distributed throughout all domains of life. They have key roles in several cellular processes by shaping membranes and modulating the activity of the proteins inserted into those membranes. They are synthesized by two main pathways, the so-called eukaryotic pathway, exclusively found in mitochondria, and the prokaryotic pathway, present in most bacteria and archaea. In the prokaryotic pathway, the first and the third reactions are catalyzed by phosphatidylglycerol phosphate synthase (Pgps) belonging to the transferase family and cardiolipin synthase (Cls) belonging to the hydrolase family, while in the eukaryotic pathway, those same reactions are catalyzed by unrelated homonymous enzymes: Pgps of the hydrolase family and Cls of the transferase family. Because of the enzymatic arrangement found in both pathways, it seems that the eukaryotic pathway evolved by convergence to the prokaryotic pathway. However, since mitochondria evolved from a bacterial endosymbiont, it would suggest that the eukaryotic pathway arose from the prokaryotic pathway. In this review, it is proposed that the eukaryote pathway evolved directly from a prokaryotic pathway by the neofunctionalization of the bacterial enzymes. Moreover, after the eukaryotic radiation, this pathway was reshaped by horizontal gene transfers or subsequent endosymbiotic processes.
Collapse
|
4
|
Christian RW, Hewitt SL, Roalson EH, Dhingra A. Genome-Scale Characterization of Predicted Plastid-Targeted Proteomes in Higher Plants. Sci Rep 2020; 10:8281. [PMID: 32427841 PMCID: PMC7237471 DOI: 10.1038/s41598-020-64670-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Plastids are morphologically and functionally diverse organelles that are dependent on nuclear-encoded, plastid-targeted proteins for all biochemical and regulatory functions. However, how plastid proteomes vary temporally, spatially, and taxonomically has been historically difficult to analyze at a genome-wide scale using experimental methods. A bioinformatics workflow was developed and evaluated using a combination of fast and user-friendly subcellular prediction programs to maximize performance and accuracy for chloroplast transit peptides and demonstrate this technique on the predicted proteomes of 15 sequenced plant genomes. Gene family grouping was then performed in parallel using modified approaches of reciprocal best BLAST hits (RBH) and UCLUST. A total of 628 protein families were found to have conserved plastid targeting across angiosperm species using RBH, and 828 using UCLUST. However, thousands of clusters were also detected where only one species had predicted plastid targeting, most notably in Panicum virgatum which had 1,458 proteins with species-unique targeting. An average of 45% overlap was found in plastid-targeted protein-coding gene families compared with Arabidopsis, but an additional 20% of proteins matched against the full Arabidopsis proteome, indicating a unique evolution of plastid targeting. Neofunctionalization through subcellular relocalization is known to impart novel biological functions but has not been described before on a genome-wide scale for the plastid proteome. Further work to correlate these predicted novel plastid-targeted proteins to transcript abundance and high-throughput proteomics will uncover unique aspects of plastid biology and shed light on how the plastid proteome has evolved to influence plastid morphology and biochemistry.
Collapse
Affiliation(s)
- Ryan W Christian
- Department of Horticulture, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Seanna L Hewitt
- Department of Horticulture, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Eric H Roalson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, USA.
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA.
| |
Collapse
|
5
|
Qiu Y, Tay YV, Ruan Y, Adams KL. Divergence of duplicated genes by repeated partitioning of splice forms and subcellular localization. THE NEW PHYTOLOGIST 2020; 225:1011-1022. [PMID: 31469915 DOI: 10.1111/nph.16148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Gene duplication is a prominent and recurrent process in plant genomes. Among the possible fates of duplicated genes, subfunctionalization refers to duplicates taking on different parts of the function or expression pattern of the ancestral gene. This partitioning could be accompanied by changes in subcellular localization of the protein products. When alternative splicing of gene products leads to protein products with different subcellular localizations, we propose that after gene duplication there will be partitioning of the alternatively spliced forms such that the products of each duplicate are localized to only one of the original locations, which we refer to as sublocalization. We identified the plastid ascorbate peroxidase (cpAPX) genes across angiosperms and analyzed their duplication history, alternative splicing, and subcellular targeting patterns to identify cases of sublocalization. We found angiosperms typically have one cpAPX gene that generates both thylakoidal APX (tAPX) and stromal APX (sAPX) through alternative splicing. We identified several independent lineage-specific sublocalization cases with specialized paralogues of tAPX and sAPX. We determined that the sublocalization happened through two types of sequence evolution patterns. Our findings suggest that the divergence through sublocalization is key to the retention of paralogous cpAPX genes in angiosperms.
Collapse
Affiliation(s)
- Yichun Qiu
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yii Van Tay
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yuan Ruan
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Schenck CA, Last RL. Location, location! cellular relocalization primes specialized metabolic diversification. FEBS J 2019; 287:1359-1368. [PMID: 31623016 DOI: 10.1111/febs.15097] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Specialized metabolites are structurally diverse and cell- or tissue-specific molecules produced in restricted plant lineages. In contrast, primary metabolic pathways are highly conserved in plants and produce metabolites essential for all of life, such as amino acids and nucleotides. Substrate promiscuity - the capacity to accept non-native substrates - is a common characteristic of enzymes, and its impact is especially apparent in generating specialized metabolite variation. However, promiscuity only leads to metabolic diversity when alternative substrates are available; thus, enzyme cellular and subcellular localization directly influence chemical phenotypes. We review a variety of mechanisms that modulate substrate availability for promiscuous plant enzymes. We focus on examples where evolution led to modification of the 'cellular context' through changes in cell-type expression, subcellular relocalization, pathway sequestration, and cellular mixing via tissue damage. These varied mechanisms contributed to the emergence of structurally diverse plant specialized metabolites and inform future metabolic engineering approaches.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. TRF4, the novel TBP-related protein of Drosophila melanogaster, is concentrated at the endoplasmic reticulum and copurifies with proteins participating in the processes associated with endoplasmic reticulum. J Cell Biochem 2019; 120:7927-7939. [PMID: 30426565 DOI: 10.1002/jcb.28070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Understanding the functions of TBP-related factors is essential for studying chromatin assembly and transcription regulation in higher eukaryotes. The novel TBP-related protein-coding gene, trf4, was described in Drosophila melanogaster. trf4 is found only in Drosophila and has likely originated in Drosophila common ancestor. TRF4 protein has a distant homology with TBP and TRF2 in the region of TBP-like domain and is evolutionarily conserved among distinct Drosophila species, which indicates its functional significance. TRF4 is widely expressed in D. melanogaster with high levels of its expression being observed in testes. Interestingly enough, TRF4 has become a cytoplasmic protein having lost nuclear localization signal sequence. TRF4 is concentrated at the endoplasmic reticulum (ER) and copurifies with the proteins participating in the ER-associated processes. We suggest that trf4 gene is an example of homolog neofunctionalization by protein subcellular relocalization pathway, where the subcellular relocalization of gene product of duplicated gene leads to the new functions in ER-associated processes.
Collapse
Affiliation(s)
- Maria M Kurshakova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Nabirochkina
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G Georgieva
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Kopytova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Tsitsekian D, Daras G, Alatzas A, Templalexis D, Hatzopoulos P, Rigas S. Comprehensive analysis of Lon proteases in plants highlights independent gene duplication events. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2185-2197. [PMID: 30590727 PMCID: PMC6460959 DOI: 10.1093/jxb/ery440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 05/10/2023]
Abstract
The degradation of damaged proteins is essential for cell viability. Lon is a highly conserved ATP-dependent serine-lysine protease that maintains proteostasis. We performed a comparative genome-wide analysis to determine the evolutionary history of Lon proteases. Prokaryotes and unicellular eukaryotes retained a single Lon copy, whereas multicellular eukaryotes acquired a peroxisomal copy, in addition to the mitochondrial gene, to sustain the evolution of higher order organ structures. Land plants developed small Lon gene families. Despite the Lon2 peroxisomal paralog, Lon genes triplicated in the Arabidopsis lineage through sequential evolutionary events including whole-genome and tandem duplications. The retention of Lon1, Lon4, and Lon3 triplicates relied on their differential and even contrasting expression patterns, distinct subcellular targeting mechanisms, and functional divergence. Lon1 seems similar to the pre-duplication ancestral gene unit, whereas the duplication of Lon3 and Lon4 is evolutionarily recent. In the wider context of plant evolution, papaya is the only genome with a single ancestral Lon1-type gene. The evolutionary trend among plants is to acquire Lon copies with ambiguous pre-sequences for dual-targeting to mitochondria and chloroplasts, and a substrate recognition domain that deviates from the ancestral Lon1 type. Lon genes constitute a paradigm of dynamic evolution contributing to understanding the functional fate of gene duplicates.
Collapse
Affiliation(s)
- Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Anastasios Alatzas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Correspondence:
| |
Collapse
|
9
|
Zhang YJ, Wang W, Yang HL, Li Y, Kang XY, Wang XR, Yang ZL. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants. PLoS One 2015; 10:e0145038. [PMID: 26684301 PMCID: PMC4687524 DOI: 10.1371/journal.pone.0145038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022] Open
Abstract
Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.
Collapse
Affiliation(s)
- Yuan-Jie Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hai-Ling Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiang-Yang Kang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao-Ru Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Ling Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Liu SL, Pan AQ, Adams KL. Protein subcellular relocalization of duplicated genes in Arabidopsis. Genome Biol Evol 2014; 6:2501-15. [PMID: 25193306 PMCID: PMC4202327 DOI: 10.1093/gbe/evu191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene duplications during eukaroytic evolution, by successive rounds of polyploidy and by smaller scale duplications, have provided an enormous reservoir of new genes for the evolution of new functions. Preservation of many duplicated genes can be ascribed to changes in sequences, expression patterns, and functions. Protein subcellular relocalization (protein targeting to a new location within the cell) is another way that duplicated genes can diverge. We studied subcellular relocalization of gene pairs duplicated during the evolution of the Brassicaceae including gene pairs from the alpha whole genome duplication that occurred at the base of the family. We analyzed experimental localization data from green fluorescent protein experiments for 128 duplicate pairs in Arabidopsis thaliana, revealing 19 pairs with subcellular relocalization. Many more of the duplicate pairs with relocalization than with the same localization showed an accelerated rate of amino acid sequence evolution in one duplicate, and one gene showed evidence for positive selection. We studied six duplicate gene pairs in more detail. We used gene family analysis with several pairs to infer which gene shows relocalization. We identified potential sequence mutations through comparative analysis that likely result in relocalization of two duplicated gene products. We show that four cases of relocalization have new expression patterns, compared with orthologs in outgroup species, including two with novel expression in pollen. This study provides insights into subcellular relocalization of evolutionarily recent gene duplicates and features of genes whose products have been relocalized.
Collapse
Affiliation(s)
- Shao-Lun Liu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Present address: Department of Life Science, Tunghai University, Taichung, Taiwan
| | - An Qi Pan
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Present address: Mintec Inc., Vancouver, BC, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|