1
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
2
|
García-Lozano M, Henzler C, Porras MÁG, Pons I, Berasategui A, Lanz C, Budde H, Oguchi K, Matsuura Y, Pauchet Y, Goffredi S, Fukatsu T, Windsor D, Salem H. Paleocene origin of a streamlined digestive symbiosis in leaf beetles. Curr Biol 2024; 34:1621-1634.e9. [PMID: 38377997 DOI: 10.1016/j.cub.2024.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christine Henzler
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Aileen Berasategui
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands
| | - Christa Lanz
- Genome Center, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Heike Budde
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Kohei Oguchi
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; Misaki Marine Biological Station, The University of Tokyo, Miura 238-0225, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany; Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama.
| |
Collapse
|
3
|
Manzano-Marín A, Kvist S, Oceguera-Figueroa A. Evolution of an Alternative Genetic Code in the Providencia Symbiont of the Hematophagous Leech Haementeria acuecueyetzin. Genome Biol Evol 2023; 15:evad164. [PMID: 37690114 PMCID: PMC10540940 DOI: 10.1093/gbe/evad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Strict blood-feeding animals are confronted with a strong B-vitamin deficiency. Blood-feeding leeches from the Glossiphoniidae family, similarly to hematophagous insects, have evolved specialized organs called bacteriomes to harbor symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the esophagus which house intracellular "Candidatus Providencia siddallii" bacteria. Previous work analyzing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesizing B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B-vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of H. acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Present address: Swedish Museum of Natural History, Stockholm, Sweden
| | - Alejandro Oceguera-Figueroa
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Gilliland CA, Patel V, McCormick AC, Mackett BM, Vogel KJ. Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol Ecol 2023; 32:920-935. [PMID: 36464913 PMCID: PMC10107482 DOI: 10.1111/mec.16800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022]
Abstract
Kissing bugs (Hempitera: Reduviidae) are obligately and exclusively blood feeding insects. Vertebrate blood is thought to provide insufficient B vitamins to insects, which rely on symbiotic relationships with bacteria that provision these nutrients. Kissing bugs harbour environmentally acquired bacteria in their gut lumen, without which they are unable to develop to adulthood. Rhodococcus rhodnii was initially identified as the sole symbiont of Rhodnius prolixus, but modern studies of the kissing bug microbiome suggest that R. rhodnii is not always present or abundant in wild-caught individuals. We asked whether R. rhodnii or other bacteria alone could function as symbionts of R. prolixus. We produced insects with no bacteria (axenic) or with known microbiomes (gnotobiotic). Gnotobiotic insects harbouring R. rhodnii alone developed faster, had higher survival, and laid more eggs than those harbouring other bacterial monocultures, including other described symbionts of kissing bugs. R. rhodnii grew to high titre in the guts of R. prolixus while other tested species were found at much lower abundance. Rhodococcus species tested had nearly identical B vitamin biosynthesis genes, and dietary supplementation of B vitamins had a relatively minor effect on development and survival of gnotobiotic R. prolixus. Our results indicate that R. prolixus have a higher fitness when harbouring R. rhodnii than other bacteria tested, that this may be due to R. rhodnii existing at higher titres and providing more B vitamins to the host, and that symbiont B vitamin synthesis is probably a necessary but not sufficient function of gut bacteria in kissing bugs.
Collapse
Affiliation(s)
| | - Vilas Patel
- Department of Entomology, The University of Georgia, Athens, Georgia, USA
| | - Ashley C McCormick
- Department of Entomology, The University of Georgia, Athens, Georgia, USA
| | - Bradley M Mackett
- Department of Biological Sciences, The University of Southern California, Los Angeles, California, USA
| | - Kevin J Vogel
- Department of Entomology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|
6
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
7
|
Rafiqi AM, Polo PG, Milat NS, Durmuş ZÖ, Çolak-Al B, Alarcón ME, Çağıl FZ, Rajakumar A. Developmental Integration of Endosymbionts in Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In endosymbiosis, two independently existing entities are inextricably intertwined such that they behave as a single unit. For multicellular hosts, the endosymbiont must be integrated within the host developmental genetic network to maintain the relationship. Developmental integration requires innovations in cell type, gene function, gene regulation, and metabolism. These innovations are contingent upon the existing ecological interactions and may evolve mutual interdependence. Recent studies have taken significant steps toward characterizing the proximate mechanisms underlying interdependence. However, the study of developmental integration is only in its early stages of investigation. Here, we review the literature on mutualistic endosymbiosis to explore how unicellular endosymbionts developmentally integrate into their multicellular hosts with emphasis on insects as a model. Exploration of this process will help gain a more complete understanding of endosymbiosis. This will pave the way for a better understanding of the endosymbiotic theory of evolution in the future.
Collapse
|
8
|
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae). THE ISME JOURNAL 2022; 16:642-654. [PMID: 34508228 PMCID: PMC8857208 DOI: 10.1038/s41396-021-01102-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.
Collapse
|
9
|
Stever H, Eiben J, Bennett GM. Hawaiian Nysius Insects Rely on an Obligate Symbiont with a Reduced Genome That Retains a Discrete Nutritional Profile to Match Their Plant Seed Diet. Genome Biol Evol 2021; 13:6349176. [PMID: 34383896 PMCID: PMC8412300 DOI: 10.1093/gbe/evab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Seed-feeding Nysius insects (Hemiptera: Lygaeidae) have a symbiotic association with distinct intracellular bacteria, “Candidatus Schneideria nysicola” (Gammaproteobacteria). Although many other hemipteran insect groups generally rely on bacterial symbionts that synthesize all ten essential amino acids lacking in their plant sap diets, the nutritional role of Schneideria in Nysius hosts that specialize on a more nutritionally complete seed-based diet has remained unknown. To determine the nutritional and functional capabilities of Schneideria, we sequenced the complete Schneideria genomes from three distantly related endemic Hawaiian Nysius seed bug species. The complete Schneideria genomes are highly conserved and perfectly syntenic among Hawaiian Nysius host species. Each circular chromosome is ∼0.57 Mb in size and encodes 537 protein-coding genes. They further exhibit a strong A + T nucleotide substitution bias with an average G + C nucleotide content of 29%. The predicted nutritional contribution of Schneideria includes four B vitamins and five of the ten essential amino acids that likely match its hosts’ seed-based diet. Disrupted and degraded genes in Schneideria suggests that Hawaiian lineages are undergoing continued gene losses observed in the smaller genomes of the other more ancient hemipteran symbionts.
Collapse
Affiliation(s)
- Heather Stever
- Department of Life and Environmental Sciences, University of California, Merced, USA
| | - Jesse Eiben
- Department of Biology, Geology, and Environmental Sciences, California University of Pennsylvania, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, USA
| |
Collapse
|
10
|
Waneka G, Vasquez YM, Bennett GM, Sloan DB. Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects. Genome Biol Evol 2020; 13:6020258. [PMID: 33275136 PMCID: PMC7952229 DOI: 10.1093/gbe/evaa254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Compared with free-living bacteria, endosymbionts of sap-feeding insects have tiny and rapidly evolving genomes. Increased genetic drift, high mutation rates, and relaxed selection associated with host control of key cellular functions all likely contribute to genome decay. Phylogenetic comparisons have revealed massive variation in endosymbiont evolutionary rate, but such methods make it difficult to partition the effects of mutation versus selection. For example, the ancestor of Auchenorrhynchan insects contained two obligate endosymbionts, Sulcia and a betaproteobacterium (BetaSymb; called Nasuia in leafhoppers) that exhibit divergent rates of sequence evolution and different propensities for loss and replacement in the ensuing ∼300 Ma. Here, we use the auchenorrhynchan leafhopper Macrosteles sp. nr. severini, which retains both of the ancestral endosymbionts, to test the hypothesis that differences in evolutionary rate are driven by differential mutagenesis. We used a high-fidelity technique known as duplex sequencing to measure and compare low-frequency variants in each endosymbiont. Our direct detection of de novode novo mutations reveals that the rapidly evolving endosymbiont (Nasuia) has a much higher frequency of single-nucleotide variants than the more stable endosymbiont (Sulcia) and a mutation spectrum that is potentially even more AT-biased than implied by the 83.1% AT content of its genome. We show that indels are common in both endosymbionts but differ substantially in length and distribution around repetitive regions. Our results suggest that differences in long-term rates of sequence evolution in Sulcia versus BetaSymb, and perhaps the contrasting degrees of stability of their relationships with the host, are driven by differences in mutagenesis.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Gupta A, Nair S. Dynamics of Insect-Microbiome Interaction Influence Host and Microbial Symbiont. Front Microbiol 2020; 11:1357. [PMID: 32676060 PMCID: PMC7333248 DOI: 10.3389/fmicb.2020.01357] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Insects share an intimate relationship with their gut microflora and this symbiotic association has developed into an essential evolutionary outcome intended for their survival through extreme environmental conditions. While it has been clearly established that insects, with very few exceptions, associate with several microbes during their life cycle, information regarding several aspects of these associations is yet to be fully unraveled. Acquisition of bacteria by insects marks the onset of microbial symbiosis, which is followed by the adaptation of these bacterial species to the gut environment for prolonged sustenance and successful transmission across generations. Although several insect-microbiome associations have been reported and each with their distinctive features, diversifications and specializations, it is still unclear as to what led to these diversifications. Recent studies have indicated the involvement of various evolutionary processes operating within an insect body that govern the transition of a free-living microbe to an obligate or facultative symbiont and eventually leading to the establishment and diversification of these symbiotic relationships. Data from various studies, summarized in this review, indicate that the symbiotic partners, i.e., the bacteria and the insect undergo several genetic, biochemical and physiological changes that have profound influence on their life cycle and biology. An interesting outcome of the insect-microbe interaction is the compliance of the microbial partner to its eventual genome reduction. Endosymbionts possess a smaller genome as compared to their free-living forms, and thus raising the question what is leading to reductive evolution in the microbial partner. This review attempts to highlight the fate of microbes within an insect body and its implications for both the bacteria and its insect host. While discussion on each specific association would be too voluminous and outside the scope of this review, we present an overview of some recent studies that contribute to a better understanding of the evolutionary trajectory and dynamics of the insect-microbe association and speculate that, in the future, a better understanding of the nature of this interaction could pave the path to a sustainable and environmentally safe way for controlling economically important pests of crop plants.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
12
|
Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME JOURNAL 2020; 14:1384-1395. [PMID: 32076126 DOI: 10.1038/s41396-020-0616-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023]
Abstract
Auchenorrhynchan insects (Hemiptera) generally depend on two bacterial symbionts for nutrition. These bacteria experience extreme genome reduction and loss of essential cell functions that require direct host support, or the replacement of failing symbionts with more capable ones. However, it remains unclear how hosts adapt to integrate symbionts into their systems, particularly when they are replaced. Here, we comparatively investigated the evolution of host-support mechanisms in the glassy-winged sharpshooter, Homalodisca vitripennis (GWSS), and the aster leafhopper, Macrosteles quadrilineatus (ALF). ALF harbors the ancestral co-symbionts of the Auchenorrhyncha that have tiny genomes, Sulcia (190 kb) and Nasuia (112 kb). In GWSS, Sulcia retains an expanded genome (245 kb), but Nasuia was replaced by the more capable Baumannia (686 kb). To support their symbionts, GWSS and ALF have evolved novel mechanisms via horizontal gene transfer, gene duplication, and co-option of mitochondrial support genes. However, GWSS has fewer support systems targeting essential bacterial processes. In particular, although both hosts use ancestral mechanisms to support Sulcia, GWSS does not encode all of the same support genes required to sustain Sulcia-ALF or Nasuia. Moreover, GWSS support of Baumannia is far more limited and tailored to its expanded capabilities. Our results demonstrate how symbiont replacements shape host genomes and the co-evolutionary process.
Collapse
|
13
|
Sheffer MM, Uhl G, Prost S, Lueders T, Urich T, Bengtsson MM. Tissue- and Population-Level Microbiome Analysis of the Wasp Spider Argiope bruennichi Identified a Novel Dominant Bacterial Symbiont. Microorganisms 2019; 8:E8. [PMID: 31861544 PMCID: PMC7023434 DOI: 10.3390/microorganisms8010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many ecological and evolutionary processes in animals depend upon microbial symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We compared the microbiome between populations, individuals, and tissue types of a range-expanding spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known endosymbionts in spiders and characterizes the total microbiome across different body compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal pellets). Overall, the microbiome differed significantly between populations and individuals, but not between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically distinct populations and that is also present in offspring. The novel symbiont is affiliated with the Tenericutes, but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically transmitted. Our results shed light on the processes that shape microbiome differentiation in this species and raise several questions about the implications of the novel dominant bacterial symbiont on the biology and evolution of its host.
Collapse
Affiliation(s)
- Monica M. Sheffer
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany;
| | - Gabriele Uhl
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany;
| | - Stefan Prost
- LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, 60325 Frankfurt, Germany;
- South African National Biodiversity Institute, National Zoological Gardens of South Africa, Pretoria 0001, South Africa
| | - Tillmann Lueders
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany;
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, 174897 Greifswald, Germany;
| | - Mia M. Bengtsson
- Institute of Microbiology, University of Greifswald, 174897 Greifswald, Germany;
| |
Collapse
|
14
|
Bennett GM, Mao M. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Environ Microbiol 2018; 20:4461-4472. [PMID: 30047196 DOI: 10.1111/1462-2920.14367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/15/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022]
Abstract
Insects in the Auchenorrhyncha (Hemiptera: Suborder) established nutritional symbioses with bacteria approximately 300 million years ago (MYA). The suborder split early during its diversification (~ 250 MYA) into the Fulgoroidea (planthoppers) and Cicadomorpha (leafhoppers and cicadas). The two lineages share some symbionts, including Sulcia and possibly a Betaproteobacteria that collaboratively provide their hosts with 10 essential amino acids (EAA). Some hosts harbour three bacteria, as is common among planthoppers. However, genomic studies are currently restricted to the dual-bacterial symbioses found in Cicadomorpha, leaving the origins and functions of these more complex symbioses unclear. To address these questions, we sequenced the genomes and performed phylogenomic analyses of 'Candidatus Sulcia muelleri' (Bacteroidetes), 'Ca. Vidania fulgoroideae' (Betaproteobacteria) and 'Ca. Purcelliella pentastirinorum' (Gammaproteobacteria) from a planthopper (Cixiidae: Oliarus). In contrast to the Cicadomorpha, nutritional synthesis responsibilities are rearranged between the cixiid symbionts. Although Sulcia has a highly conserved genome across the Auchenorrhyncha, in the cixiids it is greatly reduced and provides only three EAAs. Vidania contributes the remaining seven EAAs. Phylogenomic results suggest that it represents an ancient symbiont lineage paired with Sulcia throughout the Auchenorrhyncha. Finally, Purcelliella was recently acquired from plant-insect associated bacteria (Pantoea-Erwinia) to provide B vitamins and metabolic support to its degenerate partners.
Collapse
Affiliation(s)
- Gordon M Bennett
- Life and Environmental Sciences Unit, University of California, Merced, CA, 95343, USA.,Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822, USA
| | - Meng Mao
- Life and Environmental Sciences Unit, University of California, Merced, CA, 95343, USA.,Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
15
|
Panfilio KA, Angelini DR. By land, air, and sea: hemipteran diversity through the genomic lens. CURRENT OPINION IN INSECT SCIENCE 2018; 25:106-115. [PMID: 29602356 DOI: 10.1016/j.cois.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as the rich research tradition of ecological, physiological, developmental, and particularly cytogenetic investigation that spans the diversity of the Hemiptera.
Collapse
Affiliation(s)
- Kristen A Panfilio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom; Institute of Zoology: Developmental Biology, University of Cologne, 50674 Cologne, Germany.
| | - David R Angelini
- Department of Biology, Colby College, Waterville, ME 04901, United States
| |
Collapse
|
16
|
Wernegreen JJ. In it for the long haul: evolutionary consequences of persistent endosymbiosis. Curr Opin Genet Dev 2017; 47:83-90. [PMID: 28934627 DOI: 10.1016/j.gde.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 11/30/2022]
Abstract
Phylogenetically independent bacterial lineages have undergone a profound lifestyle shift: from a free-living to obligately host-associated existence. Among these lineages, intracellular bacterial mutualists of insects are among the most intimate, constrained symbioses known. These obligate endosymbionts exhibit severe gene loss and apparent genome deterioration. Evolutionary theory provides a basis to link their unusual genomic features with shifts in fundamental mechanisms - selection, genetic drift, mutation, and recombination. This mini-review highlights recent comparative and experimental research of processes shaping ongoing diversification within these ancient associations. Recent work supports clear contributions of stochastic processes, including genetic drift and exceptionally strong mutational pressure, toward degenerative evolution. Despite possible compensatory mechanisms, genome degradation may constrain how persistent endosymbionts (and their hosts) respond to environmental fluctuations.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
17
|
Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis) Reveal Differential Gene Expression in Bacteria Occupying Multiple Host Organs. G3-GENES GENOMES GENETICS 2017; 7:3073-3082. [PMID: 28705905 PMCID: PMC5592932 DOI: 10.1534/g3.117.044255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission.
Collapse
|
18
|
Boscaro V, Kolisko M, Felletti M, Vannini C, Lynn DH, Keeling PJ. Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nat Ecol Evol 2017; 1:1160-1167. [PMID: 29046583 DOI: 10.1038/s41559-017-0237-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/14/2017] [Indexed: 02/02/2023]
Abstract
Endosymbiosis plays an important role in ecology and evolution, but fundamental aspects of the origin of intracellular symbionts remain unclear. The extreme age of many symbiotic relationships, lack of data on free-living ancestors and uniqueness of each event hinder investigations. Here, we describe multiple strains of the bacterium Polynucleobacter that evolved independently and under similar conditions from closely related, free-living ancestors to become obligate endosymbionts of closely related ciliate hosts. As these genomes reduced in parallel from similar starting states, they provide unique glimpses into the mechanisms underlying genome reduction in symbionts. We found that gene loss is contingently lineage-specific, with no evidence for ordered streamlining. However, some genes in otherwise disrupted pathways are retained, possibly reflecting cryptic genetic network complexity. We also measured substitution rates between many endosymbiotic and free-living pairs for hundreds of genes, which showed that genetic drift, and not mutation pressure, is the main non-selective factor driving molecular evolution in endosymbionts.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Martin Kolisko
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Prague, 370 05, Czech Republic
| | - Michele Felletti
- Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| | - Claudia Vannini
- Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Denis H Lynn
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
19
|
Mao M, Yang X, Poff K, Bennett G. Comparative Genomics of the Dual-Obligate Symbionts from the Treehopper, Entylia carinata (Hemiptera: Membracidae), Provide Insight into the Origins and Evolution of an Ancient Symbiosis. Genome Biol Evol 2017; 9:1803-1815. [PMID: 28854637 PMCID: PMC5533117 DOI: 10.1093/gbe/evx134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Insect species in the Auchenorrhyncha suborder (Hemiptera) maintain ancient obligate symbioses with bacteria that provide essential amino acids (EAAs) deficient in their plant-sap diets. Molecular studies have revealed that two complementary symbiont lineages, "Candidatus Sulcia muelleri" and a betaproteobacterium ("Ca. Zinderia insecticola" in spittlebugs [Cercopoidea] and "Ca. Nasuia deltocephalinicola" in leafhoppers [Cicadellidae]) may have persisted in the suborder since its origin ∼300 Ma. However, investigation of how this pair has co-evolved on a genomic level is limited to only a few host lineages. We sequenced the complete genomes of Sulcia and a betaproteobacterium from the treehopper, Entylia carinata (Membracidae: ENCA), as the first representative from this species-rich group. It also offers the opportunity to compare symbiont evolution across a major insect group, the Membracoidea (leafhoppers + treehoppers). Genomic analyses show that the betaproteobacteria in ENCA is a member of the Nasuia lineage. Both symbionts have larger genomes (Sulcia = 218 kb and Nasuia = 144 kb) than related lineages in Deltocephalinae leafhoppers, retaining genes involved in basic cellular functions and information processing. Nasuia-ENCA further exhibits few unique gene losses, suggesting that its parent lineage in the common ancestor to the Membracoidea was already highly reduced. Sulcia-ENCA has lost the abilities to synthesize menaquinone cofactor and to complete the synthesis of the branched-chain EAAs. Both capabilities are conserved in other Sulcia lineages sequenced from across the Auchenorrhyncha. Finally, metagenomic sequencing recovered the partial genome of an Arsenophonus symbiont, although it infects only 20% of individuals indicating a facultative role.
Collapse
Affiliation(s)
- Meng Mao
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| | - Xiushuai Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| | - Kirsten Poff
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| | - Gordon Bennett
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Mānoa
| |
Collapse
|
20
|
Sudakaran S, Kost C, Kaltenpoth M. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends Microbiol 2017; 25:375-390. [DOI: 10.1016/j.tim.2017.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 10/19/2022]
|
21
|
Complete Genome Sequences of the Obligate Symbionts "Candidatus Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" from the Pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). GENOME ANNOUNCEMENTS 2016; 4:4/1/e01604-15. [PMID: 26798106 PMCID: PMC4722273 DOI: 10.1128/genomea.01604-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two bacterial symbionts of the European pest leafhopper, Macrosteles quadripunctulatus (Hemiptera: Cicadellidae), were fully sequenced. “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” represent two of the smallest known bacterial genomes at 190 kb and 112 kb, respectively. Genome sequences are nearly identical to strains reported from the closely related host species, M. quadrilineatus.
Collapse
|