1
|
Yazdani K, Seshadri S, Tillo D, Yang M, Sibley CD, Vinson C, Schneekloth JS. Decoding complexity in biomolecular recognition of DNA i-motifs with microarrays. Nucleic Acids Res 2023; 51:12020-12030. [PMID: 37962331 PMCID: PMC10711443 DOI: 10.1093/nar/gkad981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Desiree Tillo
- Genome Analysis Unit, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892, USA
| | - Mo Yang
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Christopher D Sibley
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, 37 Convent Dr., Bethesda, MD 20892, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyle St., Frederick, MD 21702, USA
| |
Collapse
|
2
|
Lountos GT, Cherry S, Tropea JE, Wlodawer A, Miller M. Structural basis for cell type specific DNA binding of C/EBPβ: The case of cell cycle inhibitor p15INK4b promoter. J Struct Biol 2022; 214:107918. [PMID: 36343842 PMCID: PMC9909937 DOI: 10.1016/j.jsb.2022.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
C/EBPβ is a key regulator of numerous cellular processes, but it can also contribute to tumorigenesis and viral diseases. It binds to specific DNA sequences (C/EBP sites) and interacts with other transcription factors to control expression of multiple eukaryotic genes in a tissue and cell-type dependent manner. A body of evidence has established that cell-type-specific regulatory information is contained in the local DNA sequence of the binding motif. In human epithelial cells, C/EBPβ is an essential cofactor for TGFβ signaling in the case of Smad2/3/4 and FoxO-dependent induction of the cell cycle inhibitor, p15INK4b. In the TGFβ-responsive region 2 of the p15INK4b promoter, the Smad binding site is flanked by a C/EBP site, CTTAA•GAAAG, which differs from the canonical, palindromic ATTGC•GCAAT motif. The X-ray crystal structure of C/EBPβ bound to the p15INK4b promoter fragment shows how GCGC-to-AAGA substitution generates changes in the intermolecular interactions in the protein-DNA interface that enhances C/EBPβ binding specificity, limits possible epigenetic regulation of the promoter, and generates a DNA element with a unique pattern of methyl groups in the major groove. Significantly, CT/GA dinucleotides located at the 5'ends of the double stranded element maintain local narrowing of the DNA minor groove width that is necessary for DNA recognition. Our results suggest that C/EBPβ would accept all forms of modified cytosine in the context of the CpT site. This contrasts with the effect on the consensus motif, where C/EBPβ binding is modestly increased by cytosine methylation, but substantially decreased by hydroxymethylation.
Collapse
Affiliation(s)
- George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Scott Cherry
- Protein Purification Core, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Joseph E Tropea
- Protein Purification Core, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702-1201 USA
| | - Maria Miller
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702-1201 USA
| |
Collapse
|
3
|
Hanson HE, Liebl AL. The Mutagenic Consequences of DNA Methylation within and across Generations. EPIGENOMES 2022; 6:33. [PMID: 36278679 PMCID: PMC9624357 DOI: 10.3390/epigenomes6040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.
Collapse
Affiliation(s)
- Haley E. Hanson
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Andrea L. Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
4
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
5
|
Liu X, Weikum ER, Tilo D, Vinson C, Ortlund EA. Structural basis for glucocorticoid receptor recognition of both unmodified and methylated binding sites, precursors of a modern recognition element. Nucleic Acids Res 2021; 49:8923-8933. [PMID: 34289059 PMCID: PMC8421226 DOI: 10.1093/nar/gkab605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
The most common form of DNA methylation involves the addition of a methyl group to a cytosine base in the context of a cytosine–phosphate–guanine (CpG) dinucleotide. Genomes from more primitive organisms are more abundant in CpG sites that, through the process of methylation, deamination and subsequent mutation to thymine–phosphate–guanine (TpG) sites, can produce new transcription factor binding sites. Here, we examined the evolutionary history of the over 36 000 glucocorticoid receptor (GR) consensus binding motifs in the human genome and identified a subset of them in regulatory regions that arose via a deamination and subsequent mutation event. GR can bind to both unmodified and methylated pre-GR binding sequences (GBSs) that contain a CpG site. Our structural analyses show that CpG methylation in a pre-GBS generates a favorable interaction with Arg447 mimicking that made with a TpG in a GBS. This methyl-specific recognition arose 420 million years ago and was conserved during the evolution of GR and likely helps fix the methylation on the relevant cytosines. Our study provides the first genetic, biochemical and structural evidence of high-affinity binding for the likely evolutionary precursor of extant TpG-containing GBS.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Desiree Tilo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ray S, Tillo D, Durell SR, Khund-Sayeed S, Vinson C. REL Domain of NFATc2 Binding to Five Types of DNA Using Protein Binding Microarrays. ACS OMEGA 2021; 6:4147-4154. [PMID: 33644537 PMCID: PMC7906578 DOI: 10.1021/acsomega.0c04069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
NFATc2 is a DNA binding protein in the Rel family transcription factors, which binds a CGGAA motif better when both cytosines in the CG dinucleotide are methylated. Using protein binding microarrays (PBMs), we examined the DNA binding of NFATc2 to three additional types of DNA: single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with either 5-methylcytosine (5mC, M) or 5-hydroxymethylcytosine (5hmC, H) in one strand and a cytosine in the second strand. ATTTCCAC, the complement of the core GGAA motif, is better bound as ssDNA compared to dsDNA. dsDNA containing the 5-mer CGGAA with either 5mC or 5hmC in one DNA strand is bound stronger than CGGAA. In contrast, the reverse complement TTCCG is bound weaker when it contains 5mC. Analysis of the available NFATc2:dsDNA complexes rationalizes these PBM data.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Desiree Tillo
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Stewart R. Durell
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Syed Khund-Sayeed
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Charles Vinson
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Yang Z, Li H, Jia Y, Zheng Y, Meng H, Bao T, Li X, Luo L. Intrinsic laws of k-mer spectra of genome sequences and evolution mechanism of genomes. BMC Evol Biol 2020; 20:157. [PMID: 33228538 PMCID: PMC7684957 DOI: 10.1186/s12862-020-01723-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background K-mer spectra of DNA sequences contain important information about sequence composition and sequence evolution. We want to reveal the evolution rules of genome sequences by studying the k-mer spectra of genome sequences. Results The intrinsic laws of k-mer spectra of 920 genome sequences from primate to prokaryote were analyzed. We found that there are two types of evolution selection modes in genome sequences, named as CG Independent Selection and TA Independent Selection. There is a mutual inhibition relationship between CG and TA independent selections. We found that the intensity of CG and TA independent selections correlates closely with genome evolution and G + C content of genome sequences. The living habits of species are related closely to the independent selection modes adopted by species genomes. Consequently, we proposed an evolution mechanism of genomes in which the genome evolution is determined by the intensities of the CG and TA independent selections and the mutual inhibition relationship. Besides, by the evolution mechanism of genomes, we speculated the evolution modes of prokaryotes in mild and extreme environments in the anaerobic age and the evolving process of prokaryotes from anaerobic to aerobic environment on earth as well as the originations of different eukaryotes. Conclusion We found that there are two independent selection modes in genome sequences. The evolution of genome sequence is determined by the two independent selection modes and the mutual inhibition relationship between them.
Collapse
Affiliation(s)
- Zhenhua Yang
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China.,School of Economics and Management, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Yun Jia
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yan Zheng
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014040, China
| | - Hu Meng
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Tonglaga Bao
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaolong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Liaofu Luo
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
8
|
Ray S, Tillo D, Ufot A, Assad N, Durell S, Vinson C. bZIP Dimers CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun Prefer to Bind to Some Double-Stranded DNA Sequences Containing 5-Formylcytosine and 5-Carboxylcytosine. Biochemistry 2020; 59:3529-3540. [PMID: 32902247 DOI: 10.1021/acs.biochem.0c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammalian cells, 5-methylcytosine (5mC) occurs in genomic double-stranded DNA (dsDNA) and is enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC). These cytosine modifications are enriched in regulatory regions of the genome. The effect of these oxidative products on five bZIP dimers (CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun) binding to five types of dsDNA was measured using protein binding microarrays. The five dsDNAs contain either cytosine in both DNA strands or cytosine in one strand and either 5mC, 5hmC, 5fC, or 5caC in the second strand. Some sequences containing the CEBP half-site GCAA are bound more strongly by all five bZIP domains when dsDNA contains 5mC, 5hmC, or 5fC. dsDNA containing 5caC in some TRE (AP-1)-like sequences, e.g., TGACTAA, is better bound by Zta, ATF3|cJun, and cFos|cJun.
Collapse
|
9
|
Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, Diegel M, Dunn D, Neri F, Haugen E, Rynes E, Reynolds A, Nelson J, Johnson A, Frerker M, Buckley M, Kaul R, Meuleman W, Stamatoyannopoulos JA. Global reference mapping of human transcription factor footprints. Nature 2020; 583:729-736. [PMID: 32728250 PMCID: PMC7410829 DOI: 10.1038/s41586-020-2528-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all organisms. Genetic variation in regulatory regions has been connected with diseases and diverse phenotypic traits1, but it remains challenging to distinguish variants that affect regulatory function2. Genomic DNase I footprinting enables the quantitative, nucleotide-resolution delineation of sites of transcription factor occupancy within native chromatin3-6. However, only a small fraction of such sites have been precisely resolved on the human genome sequence6. Here, to enable comprehensive mapping of transcription factor footprints, we produced high-density DNase I cleavage maps from 243 human cell and tissue types and states and integrated these data to delineate about 4.5 million compact genomic elements that encode transcription factor occupancy at nucleotide resolution. We map the fine-scale structure within about 1.6 million DNase I-hypersensitive sites and show that the overwhelming majority are populated by well-spaced sites of single transcription factor-DNA interaction. Cell-context-dependent cis-regulation is chiefly executed by wholesale modulation of accessibility at regulatory DNA rather than by differential transcription factor occupancy within accessible elements. We also show that the enrichment of genetic variants associated with diseases or phenotypic traits in regulatory regions1,7 is almost entirely attributable to variants within footprints, and that functional variants that affect transcription factor occupancy are nearly evenly partitioned between loss- and gain-of-function alleles. Unexpectedly, we find increased density of human genetic variation within transcription factor footprints, revealing an unappreciated driver of cis-regulatory evolution. Our results provide a framework for both global and nucleotide-precision analyses of gene regulatory mechanisms and functional genetic variation.
Collapse
Affiliation(s)
- Jeff Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| | - John Lazar
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Jessica Halow
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Kristen Lee
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Douglas Dunn
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Fidencio Neri
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Eric Rynes
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Audra Johnson
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Mark Frerker
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | | | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | | | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Anastasiadi D, Piferrer F. Epimutations in Developmental Genes Underlie the Onset of Domestication in Farmed European Sea Bass. Mol Biol Evol 2020; 36:2252-2264. [PMID: 31289822 PMCID: PMC6759067 DOI: 10.1093/molbev/msz153] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Domestication of wild animals induces a set of phenotypic characteristics collectively known as the domestication syndrome. However, how this syndrome emerges is still not clear. Recently, the neural crest cell deficit hypothesis proposed that it is generated by a mildly disrupted neural crest cell developmental program, but clear support is lacking due to the difficulties of distinguishing pure domestication effects from preexisting genetic differences between farmed and wild mammals and birds. Here, we use a farmed fish as model to investigate the role of persistent changes in DNA methylation (epimutations) in the process of domestication. We show that early domesticates of sea bass, with no genetic differences with wild counterparts, contain epimutations in tissues with different embryonic origins. About one fifth of epimutations that persist into adulthood are established by the time of gastrulation and affect genes involved in developmental processes that are expressed in embryonic structures, including the neural crest. Some of these genes are differentially expressed in sea bass with lower jaw malformations, a key feature of domestication syndrome. Interestingly, these epimutations significantly overlap with cytosine-to-thymine polymorphisms after 25 years of selective breeding. Furthermore, epimutated genes coincide with genes under positive selection in other domesticates. We argue that the initial stages of domestication include dynamic alterations in DNA methylation of developmental genes that affect the neural crest. Our results indicate a role for epimutations during the beginning of domestication that could be fixed as genetic variants and suggest a conserved molecular process to explain Darwin’s domestication syndrome across vertebrates.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant & Food Research, Nelson, New Zealand
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
11
|
Guerrero-Bosagna C. From epigenotype to new genotypes: Relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin Cell Dev Biol 2020; 97:86-92. [DOI: 10.1016/j.semcdb.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022]
|
12
|
Tillo D, Ray S, Syed KS, Gaylor MR, He X, Wang J, Assad N, Durell SR, Porollo A, Weirauch MT, Vinson C. The Epstein-Barr Virus B-ZIP Protein Zta Recognizes Specific DNA Sequences Containing 5-Methylcytosine and 5-Hydroxymethylcytosine. Biochemistry 2017; 56:6200-6210. [PMID: 29072898 DOI: 10.1021/acs.biochem.7b00741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Epstein-Barr virus (EBV) B-ZIP transcription factor Zta binds to many DNA sequences containing methylated CG dinucleotides. Using protein binding microarrays (PBMs), we analyzed the sequence specific DNA binding of Zta to four kinds of double-stranded DNA (dsDNA): (1) DNA containing cytosine in both strands, (2) DNA with 5-methylcytosine (5mC) in one strand and cytosine in the second strand, (3) DNA with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand, and (4) DNA in which both cytosines in all CG dinucleotides contain 5mC. We compared these data to PBM data for three additional B-ZIP proteins (CREB1 and CEBPB homodimers and cJun|cFos heterodimers). With cytosine, Zta binds the TRE motif TGAC/GTCA as previously reported. With CG dinucleotides containing 5mC on both strands, many TRE motif variants containing a methylated CG dinucleotide at two positions in the motif, such as MGAGTCA and TGAGMGA (where M = 5mC), were preferentially bound. 5mC inhibits binding of Zta to both TRE motif half-sites GTCA and CTCA. Like the CREB1 homodimer, the Zta homodimer and the cJun|cFos heterodimer more strongly bind the C/EBP half-site tetranucleotide GCAA when it contains 5mC. Zta also binds dsDNA sequences containing 5hmC in one strand, although the effect is less dramatic than that observed for 5mC. Our results identify new DNA sequences that are well-bound by the viral B-ZIP protein Zta only when they contain 5mC or 5hmC, uncovering the potential for discovery of new viral and host regulatory programs controlled by EBV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio 45229, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio 45229, United States
| | | |
Collapse
|
13
|
Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 2017; 45:2503-2515. [PMID: 28158710 PMCID: PMC5389525 DOI: 10.1093/nar/gkx057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcription factor that recognizes two versions of a 7-base pair response element, either 5΄-TGAGTCA-3΄ or 5΄-MGAGTCA-3΄ (where M = 5-methylcytosine). These two elements share the feature that 5-methylcytosine and thymine both have a methyl group in the same position, 5-carbon of the pyrimidine, so each of them has two methyl groups at nucleotide positions 1 and 5 from the 5΄ end, resulting in four methyl groups symmetrically positioned in duplex DNA. Epstein-Barr Virus Zta is a key transcriptional regulator of the viral lytic cycle that is homologous to AP-1. Zta recognizes several methylated Zta-response elements, including meZRE1 (5΄-TGAGMCA-3΄) and meZRE2 (5΄-TGAGMGA-3΄), where a methylated cytosine occupies one of the inner thymine residues corresponding to the AP-1 element, resulting in the four spatially equivalent methyl groups. Here, we study how AP-1 and Zta recognize these methyl groups within their cognate response elements. These methyl groups are in van der Waals contact with a conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun), or with the corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom). Furthermore, the two ZRE elements differ at base pair 6 (C:G versus G:C), forming a pseudo-symmetric sequence (meZRE1) or an asymmetric sequence (meZRE2). In vitro DNA binding assays suggest that Zta has high affinity for all four sequences examined, whereas AP-1 has considerably reduced affinity for the asymmetric sequence (meZRE2). We ascribe this difference to Zta Ser186 (a unique residue for Zta) whose side chain hydroxyl oxygen atom interacts with the two half sites differently, whereas the corresponding Ala266 of AP-1 Jun protein lacks such flexibility. Our analyses demonstrate a novel mechanism of 5mC/T recognition in a methylation-dependent, spatial and sequence-specific approach by basic leucine-zipper transcriptional factors.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Molecular and Systems Pharmacology graduate program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel H Speck
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer. Biomolecules 2017; 7:biom7010015. [PMID: 28216563 PMCID: PMC5372727 DOI: 10.3390/biom7010015] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S-adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.
Collapse
|
15
|
Syed KS, He X, Tillo D, Wang J, Durell SR, Vinson C. 5-Methylcytosine (5mC) and 5-Hydroxymethylcytosine (5hmC) Enhance the DNA Binding of CREB1 to the C/EBP Half-Site Tetranucleotide GCAA. Biochemistry 2016; 55:6940-6948. [PMID: 27951657 DOI: 10.1021/acs.biochem.6b00796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In human and mouse stem cells and brain, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) can occur outside of CG dinucleotides. Using protein binding microarrays (PBMs) containing 60-mer DNA probes, we evaluated the effect of 5mC and 5hmC on one DNA strand on the double-stranded DNA binding of the mouse B-ZIP transcription factors (TFs) CREB1, ATF1, and JUND. 5mC inhibited binding of CREB1 to the canonical CRE half-site |GTCA but enhanced binding to the C/EBP half-site |GCAA. 5hmC inhibited binding of CREB1 to all 8-mers except TGAT|GCAA, where binding is enhanced. We observed similar DNA binding patterns with ATF1, a closely related B-ZIP domain. In contrast, both 5mC and 5hmC inhibited binding of JUND. These results identify new DNA sequences that are well-bound by CREB1 and ATF1 only when they contain 5mC or 5hmC. Analysis of two X-ray structures examines the consequences of 5mC and 5hmC on DNA binding by CREB and FOS|JUN.
Collapse
Affiliation(s)
- Khund Sayeed Syed
- Laboratory of Metabolism and ‡Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Room 3128, Building 37, Bethesda, Maryland 20892, United States
| | - Ximiao He
- Laboratory of Metabolism and ‡Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Room 3128, Building 37, Bethesda, Maryland 20892, United States
| | - Desiree Tillo
- Laboratory of Metabolism and ‡Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Room 3128, Building 37, Bethesda, Maryland 20892, United States
| | - Jun Wang
- Laboratory of Metabolism and ‡Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Room 3128, Building 37, Bethesda, Maryland 20892, United States
| | - Stewart R Durell
- Laboratory of Metabolism and ‡Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Room 3128, Building 37, Bethesda, Maryland 20892, United States
| | - Charles Vinson
- Laboratory of Metabolism and ‡Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health , Room 3128, Building 37, Bethesda, Maryland 20892, United States
| |
Collapse
|
16
|
Khund-Sayeed S, He X, Holzberg T, Wang J, Rajagopal D, Upadhyay S, Durell SR, Mukherjee S, Weirauch MT, Rose R, Vinson C. 5-Hydroxymethylcytosine in E-box motifs ACAT|GTG and ACAC|GTG increases DNA-binding of the B-HLH transcription factor TCF4. Integr Biol (Camb) 2016; 8:936-45. [PMID: 27485769 DOI: 10.1039/c6ib00079g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We evaluated DNA binding of the B-HLH family members TCF4 and USF1 using protein binding microarrays (PBMs) containing double-stranded DNA probes with cytosine on both strands or 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) on one DNA strand and cytosine on the second strand. TCF4 preferentially bound the E-box motif (CAN|NTG) with strongest binding to the 8-mer CAG|GTGGT. 5mC uniformly decreases DNA binding of both TCF4 and USF1. The bulkier 5hmC also inhibited USF1 binding to DNA. In contrast, 5hmC dramatically enhanced TCF4 binding to E-box motifs ACAT|GTG and ACAC|GTG, being better bound than any 8-mer containing cytosine. Examination of X-ray structures of the closely related TCF3 and USF1 bound to DNA suggests TCF3 can undergo a conformational shift to preferentially bind to 5hmC while the USF1 basic region is bulkier and rigid precluding a conformation shift to bind 5hmC. These results greatly expand the regulatory DNA sequence landscape bound by TCF4.
Collapse
Affiliation(s)
- Syed Khund-Sayeed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tillo D, Mukherjee S, Vinson C. Inheritance of Cytosine Methylation. J Cell Physiol 2016; 231:2346-52. [DOI: 10.1002/jcp.25350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Desiree Tillo
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| | - Sanjit Mukherjee
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| | - Charles Vinson
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda Maryland
| |
Collapse
|