1
|
Martelossi J, Iannello M, Ghiselli F, Luchetti A. Widespread HCD-tRNA derived SINEs in bivalves rely on multiple LINE partners and accumulate in genic regions. Mob DNA 2024; 15:22. [PMID: 39415259 PMCID: PMC11481361 DOI: 10.1186/s13100-024-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retrotransposons widespread across eukaryotes. They exist both as lineage-specific, fast-evolving elements and as ubiquitous superfamilies characterized by highly conserved domains (HCD). Several of these superfamilies have been described in bivalves, however their overall distribution and impact on host genome evolution are still unknown due to the extreme scarcity of transposon libraries for the clade. In this study, we examined more than 40 bivalve genomes to uncover the distribution of HCD-tRNA-related SINEs, discover novel SINE-LINE partnerships, and understand their possible role in shaping bivalve genome evolution. RESULTS We found that bivalve HCD SINEs have an ancient origin, and they can rely on at least four different LINE clades. According to a "mosaic" evolutionary scenario, multiple LINE partner can promote the amplification of the same HCD SINE superfamilies while homologues LINE-derived tails are present between different superfamilies. Multiple SINEs were found to be highly similar between phylogenetically related species but separated by extremely long evolutionary timescales, up to ~ 400 million years. Studying their genomic distribution in a subset of five species, we observed different patterns of SINE enrichment in various genomic compartments as well as differences in the tendency of SINEs to form tandem-like and palindromic structures also within intronic sequences. Despite these differences, we observed that SINEs, especially older ones, tend to accumulate preferentially within genes, or in their close proximity, consistently with a model of survival bias for less harmful, short non-coding transposons in euchromatic genomic regions. CONCLUSION Here we conducted a wide characterization of tRNA-related SINEs in bivalves revealing their taxonomic distribution and LINE partnerships across the clade. Moreover, through the study of their genomic distribution in five species, we highlighted commonalities and differences with other previously studied eukaryotes, thus extending our understanding of SINE evolution across the tree of life.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Wang X, D’Alessandro E, Chi C, Moawad AS, Zong W, Chen C, Song C. Genetic Evaluation and Population Structure of Jiangsu Native Pigs in China Revealed by SINE Insertion Polymorphisms. Animals (Basel) 2022; 12:ani12111345. [PMID: 35681812 PMCID: PMC9179424 DOI: 10.3390/ani12111345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In a previous study, 30 SINE-RIPs were applied for population genetic analysis in 7 Chinese miniature pig populations and approved effectively in the genetic distances and breed-relationships between these populations. There are abundant indigenous pigs famous across the world for their prolificacy in the Jiangsu Province of eastern China, such as Meishan, Erhualian. Since pork production relies on limited commercial breeds such as Landrace, Large White, and Duroc pigs, characterized by maximizing productivity in intensive production systems, these indigenous pigs are nowadays decrease sharply. The genetic characterizations of these resources are essential requirements for the development of conservation, selection, and sustainable utilizations. Therefore, SINE-RIPs were selected to evaluate the genetic variation and population structure of Jiangsu pig populations and the results may assist with the conservation and utilization of these native pig populations. Abstract Short interspersed nuclear elements (SINEs), one type of retrotransposon, are considered to be ideal molecular markers due to their wide distribution in the genome, high copy number, and high polymorphism. Preliminary studies have identified more than 35,000 SINE-retrotransposon insertion polymorphisms (RIPs) in the pig genome. In this study, 18 SINE-RIPs were used to evaluate the genetic variation and population structure of seven native pig populations and two crossbreeds in the Jiangsu Province of China. Two commercial pig breeds (Duroc and Large White) and one Italian native breed (Sicilian Black pig) were selected as the control. The results showed that all 18 SINE-RIPs were polymorphic among these pigs. The Jiangsu native pig populations (Erhualian, Fengjing, Middle Meishan, Mi, Shawutou, Small Meishan, and Huai) were shown to be more polymorphic than the crossbreeds (Sushan and Sujiang) and external breeds (Sicilian Black pig, Large White, and Duroc) based on the expected heterozygosity and polymorphic information content values. Some native pigs, including Small Meishan, Mi, Middle Meishan, and Erhualian, had a higher degree of inbreeding according to the FIS values. Based on the neighbor-joining tree, all of the Jiangsu native pig populations formed one branch, while the three external pig breeds formed the other branches, with the two crossbreeds containing more than 50% external pig ancestry. The Huai pigs were independent of the other Jiangsu native pigs but shared a common ancestor with Sujiang and Mi. The results provide a new perspective on the population structure of these native pig breeds and will assist with the conservation and utilization of Chinese native pigs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (X.W.); (C.C.); (A.S.M.); (W.Z.); (C.C.)
| | - Enrico D’Alessandro
- Unit of Animal Production, Department of Veterinary Science, University of Messina, 98168 Messina, Italy;
| | - Chenglin Chi
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (X.W.); (C.C.); (A.S.M.); (W.Z.); (C.C.)
| | - Ali Shoaib Moawad
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (X.W.); (C.C.); (A.S.M.); (W.Z.); (C.C.)
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (X.W.); (C.C.); (A.S.M.); (W.Z.); (C.C.)
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (X.W.); (C.C.); (A.S.M.); (W.Z.); (C.C.)
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China; (X.W.); (C.C.); (A.S.M.); (W.Z.); (C.C.)
- Correspondence: ; Tel./Fax: +86-514-87979034
| |
Collapse
|
3
|
Han G, Zhang N, Jiang H, Meng X, Qian K, Zheng Y, Xu J, Wang J. Diversity of short interspersed nuclear elements (SINEs) in lepidopteran insects and evidence of horizontal SINE transfer between baculovirus and lepidopteran hosts. BMC Genomics 2021; 22:226. [PMID: 33789582 PMCID: PMC8010984 DOI: 10.1186/s12864-021-07543-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background Short interspersed nuclear elements (SINEs) belong to non-long terminal repeat (non-LTR) retrotransposons, which can mobilize dependent on the help of counterpart long interspersed nuclear elements (LINEs). Although 234 SINEs have been identified so far, only 23 are from insect species (SINEbase: http://sines.eimb.ru/). Results Here, five SINEs were identified from the genome of Plutella xylostella, among which PxSE1, PxSE2 and PxSE3 were tRNA-derived SINEs, PxSE4 and PxSE5 were 5S RNA-derived SINEs. A total of 18 related SINEs were further identified in 13 lepidopteran insects and a baculovirus. The 3′-tail of PxSE5 shares highly identity with that of LINE retrotransposon, PxLINE1. The analysis of relative age distribution profiles revealed that PxSE1 is a relatively young retrotransposon in the genome of P. xylostella and was generated by recent explosive amplification. Integration pattern analysis showed that SINEs in P. xylostella prefer to insert into or accumulate in introns and regions 5 kb downstream of genes. In particular, the PxSE1-like element, SlNPVSE1, in Spodoptera litura nucleopolyhedrovirus II genome is highly identical to SfSE1 in Spodoptera frugiperda, SlittSE1 in Spodoptera littoralis, and SlituSE1 in Spodoptera litura, suggesting the occurrence of horizontal transfer. Conclusions Lepidopteran insect genomes harbor a diversity of SINEs. The retrotransposition activity and copy number of these SINEs varies considerably between host lineages and SINE lineages. Host-parasite interactions facilitate the horizontal transfer of SINE between baculovirus and its lepidopteran hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07543-z.
Collapse
Affiliation(s)
- Guangjie Han
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture andAgri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Seibt KM, Schmidt T, Heitkam T. The conserved 3' Angio-domain defines a superfamily of short interspersed nuclear elements (SINEs) in higher plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:681-699. [PMID: 31610059 DOI: 10.1111/tpj.14567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Repetitive sequences are ubiquitous components of eukaryotic genomes affecting genome size and evolution as well as gene regulation. Among them, short interspersed nuclear elements (SINEs) are non-coding retrotransposons usually shorter than 1000 bp. They contain only few short conserved structural motifs, in particular an internal promoter derived from cellular RNAs and a mostly AT-rich 3' tail, whereas the remaining regions are highly variable. SINEs emerge and vanish during evolution, and often diversify into numerous families and subfamilies that are usually specific for only a limited number of species. In contrast, at the 3' end of multiple plant SINEs we detected the highly conserved 'Angio-domain'. This 37 bp segment defines the Angio-SINE superfamily, which encompasses 24 plant SINE families widely distributed across 13 orders within the plant kingdom. We retrieved 28 433 full-length Angio-SINE copies from genome assemblies of 46 plant species, frequently located in genes. Compensatory mutations in and adjacent to the Angio-domain imply selective restraints maintaining its RNA structure. Angio-SINE families share segmental sequence similarities, indicating a modular evolution with strong Angio-domain preservation. We suggest that the conserved domain contributes to the evolutionary success of Angio-SINEs through either structural interactions between SINE RNA and proteins increasing their transpositional efficiency, or by enhancing their accumulation in genes.
Collapse
Affiliation(s)
- Kathrin M Seibt
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, 01217, Germany
| | - Thomas Schmidt
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, 01217, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, 01217, Germany
| |
Collapse
|
5
|
Legrand S, Caron T, Maumus F, Schvartzman S, Quadrana L, Durand E, Gallina S, Pauwels M, Mazoyer C, Huyghe L, Colot V, Hanikenne M, Castric V. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA 2019; 10:30. [PMID: 31346350 PMCID: PMC6636163 DOI: 10.1186/s13100-019-0171-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri. Results Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either 'recent' or 'old' insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes. Conclusion Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.
Collapse
Affiliation(s)
- Sylvain Legrand
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Thibault Caron
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Florian Maumus
- 2URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Sol Schvartzman
- 3InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Leandro Quadrana
- 4IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Eléonore Durand
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maxime Pauwels
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Clément Mazoyer
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Lucie Huyghe
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Colot
- 4IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Marc Hanikenne
- 3InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Vincent Castric
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|