1
|
Mikula LC, Vogl C. The expected sample allele frequencies from populations of changing size via orthogonal polynomials. Theor Popul Biol 2024; 157:55-85. [PMID: 38552964 DOI: 10.1016/j.tpb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
In this article, discrete and stochastic changes in (effective) population size are incorporated into the spectral representation of a biallelic diffusion process for drift and small mutation rates. A forward algorithm inspired by Hidden-Markov-Model (HMM) literature is used to compute exact sample allele frequency spectra for three demographic scenarios: single changes in (effective) population size, boom-bust dynamics, and stochastic fluctuations in (effective) population size. An approach for fully agnostic demographic inference from these sample allele spectra is explored, and sufficient statistics for stepwise changes in population size are found. Further, convergence behaviours of the polymorphic sample spectra for population size changes on different time scales are examined and discussed within the context of inference of the effective population size. Joint visual assessment of the sample spectra and the temporal coefficients of the spectral decomposition of the forward diffusion process is found to be important in determining departure from equilibrium. Stochastic changes in (effective) population size are shown to shape sample spectra particularly strongly.
Collapse
Affiliation(s)
- Lynette Caitlin Mikula
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St, Andrews KY16 9TH, UK.
| | - Claus Vogl
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien, Austria; Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
2
|
Khandia R, Pandey MK, Garg R, Khan AA, Baklanov I, Alanazi AM, Nepali P, Gurjar P, Choudhary OP. Molecular insights into codon usage analysis of mitochondrial fission and fusion gene: relevance to neurodegenerative diseases. Ann Med Surg (Lond) 2024; 86:1416-1425. [PMID: 38463054 PMCID: PMC10923317 DOI: 10.1097/ms9.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondrial dysfunction is the leading cause of neurodegenerative disorders like Alzheimer's disease and Parkinson's disease. Mitochondria is a highly dynamic organelle continuously undergoing the process of fission and fusion for even distribution of components and maintaining proper shape, number, and bioenergetic functionality. A set of genes governs the process of fission and fusion. OPA1, Mfn1, and Mfn2 govern fusion, while Drp1, Fis1, MIEF1, and MIEF2 genes control fission. Determination of specific molecular patterns of transcripts of these genes revealed the impact of compositional constraints on selecting optimal codons. AGA and CCA codons were over-represented, and CCC, GTC, TTC, GGG, ACG were under-represented in the fusion gene set. In contrast, CTG was over-represented, and GCG, CCG, and TCG were under-represented in the fission gene set. Hydropathicity analysis revealed non-polar protein products of both fission and fusion gene set transcripts. AGA codon repeats are an integral part of translational regulation machinery and present a distinct pattern of over-representation and under-representation in different transcripts within the gene sets, suggestive of selective translational force precisely controlling the occurrence of the codon. Out of six synonymous codons, five synonymous codons encoding for leucine were used differently in both gene sets. Hence, forces regulating the occurrence of AGA and five synonymous leucine-encoding codons suggest translational selection. A correlation of mutational bias with gene expression and codon bias and GRAVY and AROMA signifies the selection pressure in both gene sets, while the correlation of compositional bias with gene expression, codon bias, protein properties, and minimum free energy signifies the presence of compositional constraints. More than 25% of codons of both gene sets showed a significant difference in codon usage. The overall analysis shed light on molecular features of gene sets involved in fission and fusion.
Collapse
Affiliation(s)
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Igor Baklanov
- Department of Philosophy, North Caucasus Federal University, Stavropol, Russia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prakash Nepali
- Government Medical Officer, Bhimad Primary Health Care Center, Government of Nepal, Tanahun, Nepal
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
3
|
Yıldırım B, Vogl C. Purifying selection against spurious splicing signals contributes to the base composition evolution of the polypyrimidine tract. J Evol Biol 2023; 36:1295-1312. [PMID: 37564008 PMCID: PMC10946897 DOI: 10.1111/jeb.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 08/12/2023]
Abstract
Among eukaryotes, the major spliceosomal pathway is highly conserved. While long introns may contain additional regulatory sequences, the ones in short introns seem to be nearly exclusively related to splicing. Although these regulatory sequences involved in splicing are well-characterized, little is known about their evolution. At the 3' end of introns, the splice signal nearly universally contains the dimer AG, which consists of purines, and the polypyrimidine tract upstream of this 3' splice signal is characterized by over-representation of pyrimidines. If the over-representation of pyrimidines in the polypyrimidine tract is also due to avoidance of a premature splicing signal, we hypothesize that AG should be the most under-represented dimer. Through the use of DNA-strand asymmetry patterns, we confirm this prediction in fruit flies of the genus Drosophila and by comparing the asymmetry patterns to a presumably neutrally evolving region, we quantify the selection strength acting on each motif. Moreover, our inference and simulation method revealed that the best explanation for the base composition evolution of the polypyrimidine tract is the joint action of purifying selection against a spurious 3' splice signal and the selection for pyrimidines. Patterns of asymmetry in other eukaryotes indicate that avoidance of premature splicing similarly affects the nucleotide composition in their polypyrimidine tracts.
Collapse
Affiliation(s)
- Burçin Yıldırım
- Department of Biomedical SciencesVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Claus Vogl
- Department of Biomedical SciencesVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| |
Collapse
|
4
|
Abstract
We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Vogl C, Mikula LC, Burden CJ. Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation-drift model. Theor Popul Biol 2020; 134:106-118. [PMID: 32562610 DOI: 10.1016/j.tpb.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
The stationary sampling distribution of a neutral decoupled Moran or Wright-Fisher diffusion with neutral mutations is known to first order for a general rate matrix with small but otherwise unconstrained mutation rates. Using this distribution as a starting point we derive results for maximum likelihood estimates of scaled mutation rates from site frequency data under three model assumptions: a twelve-parameter general rate matrix, a nine-parameter reversible rate matrix, and a six-parameter strand-symmetric rate matrix. The site frequency spectrum is assumed to be sampled from a fixed size population in equilibrium, and to consist of allele frequency data at a large number of unlinked sites evolving with a common mutation rate matrix without selective bias. We correct an error in a previous treatment of the same problem (Burden and Tang, 2017) affecting the estimators for the general and strand-symmetric rate matrices. The method is applied to a biological dataset consisting of a site frequency spectrum extracted from short autosomal introns in a sample of Drosophila melanogaster individuals.
Collapse
Affiliation(s)
- Claus Vogl
- Department of Biomedical Sciences, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien, Austria.
| | - Lynette C Mikula
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews KY16 9TH, UK.
| | - Conrad J Burden
- Mathematical Sciences Institute, Australian National University, Canberra, Australia.
| |
Collapse
|