1
|
Frost CF, Antoniou D, Schwartz SD. Transition Path Sampling Based Free Energy Calculations of Evolution's Effect on Rates in β-Lactamase: The Contributions of Rapid Protein Dynamics to Rate. J Phys Chem B 2024; 128:11658-11665. [PMID: 39536181 PMCID: PMC11628163 DOI: 10.1021/acs.jpcb.4c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
β-Lactamases are one of the primary enzymes responsible for antibiotic resistance and have existed for billions of years. The structural differences between a modern class A TEM-1 β-lactamase compared to a sequentially reconstructed Gram-negative bacteria β-lactamase are minor. Despite the similar structures and mechanisms, there are different functions between the two enzymes. We recently identified differences in dynamics effects that result from evolutionary changes that could potentially account for the increase in substrate specificity and catalytic rate. In this study, we used transition path sampling-based calculations of free energies to identify how evolutionary changes found between an ancestral β-lactamase, and its extant counterpart TEM-1 β-lactamase affect rate.
Collapse
Affiliation(s)
- Clara F Frost
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Dimitri Antoniou
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Diene SM, Pontarotti P, Azza S, Armstrong N, Pinault L, Chabrière E, Colson P, Rolain JM, Raoult D. Origin, Diversity, and Multiple Roles of Enzymes with Metallo-β-Lactamase Fold from Different Organisms. Cells 2023; 12:1752. [PMID: 37443786 PMCID: PMC10340364 DOI: 10.3390/cells12131752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
β-lactamase enzymes have generated significant interest due to their ability to confer resistance to the most commonly used family of antibiotics in human medicine. Among these enzymes, the class B β-lactamases are members of a superfamily of metallo-β-lactamase (MβL) fold proteins which are characterised by conserved motifs (i.e., HxHxDH) and are not only limited to bacteria. Indeed, as the result of several barriers, including low sequence similarity, default protein annotation, or untested enzymatic activity, MβL fold proteins have long been unexplored in other organisms. However, thanks to search approaches which are more sensitive compared to classical Blast analysis, such as the use of common ancestors to identify distant homologous sequences, we are now able to highlight their presence in different organisms including Bacteria, Archaea, Nanoarchaeota, Asgard, Humans, Giant viruses, and Candidate Phyla Radiation (CPR). These MβL fold proteins are multifunctional enzymes with diverse enzymatic or non-enzymatic activities of which, at least thirteen activities have been reported such as β-lactamase, ribonuclease, nuclease, glyoxalase, lactonase, phytase, ascorbic acid degradation, anti-cancer drug degradation, or membrane transport. In this review, we (i) discuss the existence of MβL fold enzymes in the different domains of life, (ii) present more suitable approaches to better investigating their homologous sequences in unsuspected sources, and (iii) report described MβL fold enzymes with demonstrated enzymatic or non-enzymatic activities.
Collapse
Affiliation(s)
- Seydina M. Diene
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Pierre Pontarotti
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- CNRS SNC5039, 13005 Marseille, France
| | - Saïd Azza
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Nicholas Armstrong
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Lucile Pinault
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Eric Chabrière
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Philippe Colson
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Jean-Marc Rolain
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| |
Collapse
|
3
|
Nidhi S, Tripathi P, Tripathi V. Phylogenetic Analysis of Anti-CRISPR and Member Addition in the Families. Mol Biotechnol 2023; 65:273-281. [PMID: 36109427 DOI: 10.1007/s12033-022-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
CRISPR-Cas is a widespread anti-viral adaptive immune system in the microorganisms. Viruses living in bacteria or some phages carry anti-CRISPR proteins to evade immunity by CRISPR-Cas. The anti-CRISPR proteins are prevalent in phages capable of lying dormant in a CRISPR-carrying host, while their orthologs frequently found in virulent phages. Here, we propose a probabilistic strategy of ancestral sequence reconstruction (ASR) and Hidden Markov Model (HMM) profile search to fish out sequences of anti-CRISPR proteins from environmental metagenomic, human microbiome metagenomic, human microbiome reference genome, and NCBI's non-redundant databases. Our results revealed that the metagenome database dark matter might contain anti-CRISPR encoding genes.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007, Marseille, France
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India.
| |
Collapse
|
4
|
Lupo V, Mercuri PS, Frère JM, Joris B, Galleni M, Baurain D, Kerff F. An Extended Reservoir of Class-D Beta-Lactamases in Non-Clinical Bacterial Strains. Microbiol Spectr 2022; 10:e0031522. [PMID: 35311582 PMCID: PMC9045261 DOI: 10.1128/spectrum.00315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial genes coding for antibiotic resistance represent a major issue in the fight against bacterial pathogens. Among those, genes encoding beta-lactamases target penicillin and related compounds such as carbapenems, which are critical for human health. Beta-lactamases are classified into classes A, B, C, and D, based on their amino acid sequence. Class D enzymes are also known as OXA beta-lactamases, due to the ability of the first enzymes described in this class to hydrolyze oxacillin. While hundreds of class D beta-lactamases with different activity profiles have been isolated from clinical strains, their nomenclature remains very uninformative. In this work, we have carried out a comprehensive survey of a reference database of 80,490 genomes and identified 24,916 OXA-domain containing proteins. These were deduplicated and their representative sequences clustered into 45 non-singleton groups derived from a phylogenetic tree of 1,413 OXA-domain sequences, including five clusters that include the C-terminal domain of the BlaR membrane receptors. Interestingly, 801 known class D beta-lactamases fell into only 18 clusters. To probe the unknown diversity of the class, we selected 10 protein sequences in 10 uncharacterized clusters and studied the activity profile of the corresponding enzymes. A beta-lactamase activity could be detected for seven of them. Three enzymes (OXA-1089, OXA-1090 and OXA-1091) were active against oxacillin and two against imipenem. These results indicate that, as already reported, environmental bacteria constitute a large reservoir of resistance genes that can be transferred to clinical strains, whether through plasmid exchange or hitchhiking with the help of transposase genes. IMPORTANCE The transmission of genes coding for resistance factors from environmental to nosocomial strains is a major component in the development of bacterial resistance toward antibiotics. Our survey of class D beta-lactamase genes in genomic databases highlighted the high sequence diversity of the enzymes that are able to recognize and/or hydrolyze beta-lactam antibiotics. Among those, we could also identify new beta-lactamases that are able to hydrolyze carbapenems, one of the last resort antibiotic families used in human antimicrobial chemotherapy. Therefore, it can be expected that the use of this antibiotic family will fuel the emergence of new beta-lactamases into clinically relevant strains.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | | | - Jean-Marie Frère
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Bernard Joris
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Charzewski Ł, Krzyśko KA, Lesyng B. Exploring Covalent Docking Mechanisms of Boron-Based Inhibitors to Class A, C and D β-Lactamases Using Time-dependent Hybrid QM/MM Simulations. Front Mol Biosci 2021; 8:633181. [PMID: 34434961 PMCID: PMC8380965 DOI: 10.3389/fmolb.2021.633181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, molecular covalent docking has been extensively developed to design new classes of inhibitors that form chemical bonds with their biological targets. This strategy for the design of such inhibitors, in particular boron-based inhibitors, holds great promise for the vast family of β-lactamases produced, inter alia, by Gram-negative antibiotic-resistant bacteria. However, the description of covalent docking processes requires a quantum-mechanical approach, and so far, only a few studies of this type have been presented. This study accurately describes the covalent docking process between two model inhibitors - representing two large families of inhibitors based on boronic-acid and bicyclic boronate scaffolds, and three β-lactamases which belong to the A, C, and D classes. Molecular fragments containing boron can be converted from a neutral, trigonal, planar state with sp2 hybridization to the anionic, tetrahedral sp3 state in a process sometimes referred to as morphing. This study applies multi-scale modeling methods, in particular, the hybrid QM/MM approach which has predictive power reaching well beyond conventional molecular modeling. Time-dependent QM/MM simulations indicated several structural changes and geometric preferences, ultimately leading to covalent docking processes. With current computing technologies, this approach is not computationally expensive, can be used in standard molecular modeling and molecular design works, and can effectively support experimental research which should allow for a detailed understanding of complex processes important to molecular medicine. In particular, it can support the rational design of covalent boron-based inhibitors for β-lactamases as well as for many other enzyme systems of clinical relevance, including SARS-CoV-2 proteins.
Collapse
Affiliation(s)
| | | | - Bogdan Lesyng
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Perez-Garcia P, Kobus S, Gertzen CGW, Hoeppner A, Holzscheck N, Strunk CH, Huber H, Jaeger KE, Gohlke H, Kovacic F, Smits SHJ, Streit WR, Chow J. A promiscuous ancestral enzyme´s structure unveils protein variable regions of the highly diverse metallo-β-lactamase family. Commun Biol 2021; 4:132. [PMID: 33514861 PMCID: PMC7846560 DOI: 10.1038/s42003-021-01671-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
The metallo-β-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-β-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from β-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-β-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-β-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Stefanie Kobus
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Nicholas Holzscheck
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
| | - Harald Huber
- Institute for Microbiology and Archaeal Center, Regensburg University, 93035, Regensburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
| | - Sander H J Smits
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
7
|
Diene SM, Pinault L, Armstrong N, Azza S, Keshri V, Khelaifia S, Chabrière E, Caetano-Anolles G, Rolain JM, Pontarotti P, Raoult D. Dual RNase and β-lactamase Activity of a Single Enzyme Encoded in Archaea. Life (Basel) 2020; 10:life10110280. [PMID: 33202677 PMCID: PMC7697635 DOI: 10.3390/life10110280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/11/2023] Open
Abstract
β-lactam antibiotics have a well-known activity which disturbs the bacterial cell wall biosynthesis and may be cleaved by β-lactamases. However, these drugs are not active on archaea microorganisms, which are naturally resistant because of the lack of β-lactam target in their cell wall. Here, we describe that annotation of genes as β-lactamases in Archaea on the basis of homologous genes is a remnant of identification of the original activities of this group of enzymes, which in fact have multiple functions, including nuclease, ribonuclease, β-lactamase, or glyoxalase, which may specialized over time. We expressed class B β-lactamase enzyme from Methanosarcina barkeri that digest penicillin G. Moreover, while weak glyoxalase activity was detected, a significant ribonuclease activity on bacterial and synthetic RNAs was demonstrated. The β-lactamase activity was inhibited by β-lactamase inhibitor (sulbactam), but its RNAse activity was not. This gene appears to have been transferred to the Flavobacteriaceae group especially the Elizabethkingia genus, in which the expressed gene shows a more specialized activity on thienamycin, but no glyoxalase activity. The expressed class C-like β-lactamase gene, from Methanosarcina sp., also shows hydrolysis activity on nitrocefin and is more closely related to DD-peptidase enzymes. Our findings highlight the need to redefine the nomenclature of β-lactamase enzymes and the specification of multipotent enzymes in different ways in Archaea and bacteria over time.
Collapse
Affiliation(s)
- Seydina M. Diene
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
| | - Lucile Pinault
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Nicholas Armstrong
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Said Azza
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Vivek Keshri
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
| | | | - Eric Chabrière
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
| | - Gustavo Caetano-Anolles
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Jean-Marc Rolain
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Pierre Pontarotti
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
- CNRS, 13005 Marseille, France;
| | - Didier Raoult
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
- IHU-Méditerranée Infection, 13005 Marseille, France;
- Correspondence: ; Tel.: +33-4-1373-2401
| |
Collapse
|
8
|
Development of a new spectrophotometric assay for rapid detection and differentiation of KPC, MBL and OXA-48 carbapenemase-producing Klebsiella pneumoniae clinical isolates. Int J Antimicrob Agents 2020; 56:106211. [PMID: 33172591 DOI: 10.1016/j.ijantimicag.2020.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
Abstract
The increased prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has made essential the design of quicker tests for CPE detection. In the present study, a simple and rapid assay was developed based on measurement of the hydrolytic activity of imipenem at a final concentration of 65 µg/mL (100 µM) through ultraviolet-visible (UV-Vis) spectrophotometry. All measurements were conducted at 297 nm. A total of 83 carbapenem-non-susceptible CPE, consisting of Klebsiella pneumoniae clinical isolates and genotypically characterised as KPC-, VIM-, NDM- or OXA-48-producers, were tested. For comparison, 30 carbapenem-non-susceptible clinical isolates, consisting of Escherichia coli and K. pneumoniae and genotypically confirmed as non-CPE, were also examined. The spectrophotometric assay enabled efficient discrimination of CPE from non-CPE isolates even in 45 min (P < 0.0001). Moreover, the presence of phenylboronic acid (PBA) or ethylene diamine tetra-acetic acid (EDTA) in the reaction mixture was able to inhibit the hydrolytic capacity of KPC- or metallo-β-lactamase (MBL)-producers, respectively, while the hydrolytic activity of OXA-48-producing strains was not affected by the presence of these inhibitors (P < 0.001). The newly developed assay presented 100% sensitivity and specificity to detect and differentiate KPC-, MBL- and OXA-48-producers compared with genotypic characterisation. Thus, the proposed spectrophotometric method can be considered as an easy, fast, accurate and cost-effective diagnostic tool for screening carbapenem-non-susceptible K. pneumoniae isolates in the clinical laboratory.
Collapse
|
9
|
Keshri V, Chabrière E, Pinault L, Colson P, Diene SM, Rolain JM, Raoult D, Pontarotti P. Promiscuous Enzyme Activity as a Driver of Allo and Iso Convergent Evolution, Lessons from the β-Lactamases. Int J Mol Sci 2020; 21:E6260. [PMID: 32872436 PMCID: PMC7504333 DOI: 10.3390/ijms21176260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The probability of the evolution of a character depends on two factors: the probability of moving from one character state to another character state and the probability of the new character state fixation. The more the evolution of a character is probable, the more the convergent evolution will be witnessed, and consequently, convergent evolution could mean that the convergent character evolution results as a combination of these two factors. We investigated this phenomenon by studying the convergent evolution of biochemical functions. For the investigation we used the case of β-lactamases. β-lactamases hydrolyze β-lactams, which are antimicrobials able to block the DD-peptidases involved in bacterial cell wall synthesis. β-lactamase activity is present in two different superfamilies: the metallo-β-lactamase and the serine β-lactamase. The mechanism used to hydrolyze the β-lactam is different for the two superfamilies. We named this kind of evolution an allo-convergent evolution. We further showed that the β-lactamase activity evolved several times within each superfamily, a convergent evolution type that we named iso-convergent evolution. Both types of convergent evolution can be explained by the two evolutionary mechanisms discussed above. The probability of moving from one state to another is explained by the promiscuous β-lactamase activity present in the ancestral sequences of each superfamily, while the probability of fixation is explained in part by positive selection, as the organisms having β-lactamase activity allows them to resist organisms that secrete β-lactams. Indeed, an organism that has a mutation that increases the β-lactamase activity will be selected, as the organisms having this activity will have an advantage over the others.
Collapse
Affiliation(s)
- Vivek Keshri
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Eric Chabrière
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Lucile Pinault
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Philippe Colson
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Seydina M Diene
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Jean-Marc Rolain
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Didier Raoult
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
| | - Pierre Pontarotti
- Aix-Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (V.K.); (E.C.); (L.P.); (P.C.); (S.M.D.); (J.-M.R.); (D.R.)
- SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
10
|
|
11
|
Yao Q, Gao L, Xu T, Chen Y, Yang X, Han M, He X, Li C, Zhou R, Yang Y. Amoxicillin Administration Regimen and Resistance Mechanisms of Staphylococcus aureus Established in Tissue Cage Infection Model. Front Microbiol 2019; 10:1638. [PMID: 31396174 PMCID: PMC6662548 DOI: 10.3389/fmicb.2019.01638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a zoonotic pathogen that causes various life-threatening diseases. The mechanisms of action of amoxicillin against S. aureus are unclear. Here, we established a rabbit tissue cage infection model to evaluate the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) parameters of amoxicillin and selective enrichment of resistant strains of S. aureus and to elucidate the evolution of its resistance to amoxicillin. S. aureus was injected into the tissue cages at 1010 colony forming units (CFU)/mL. We injected different intramuscular concentrations of amoxicillin at doses of 5, 10, 20, and 30 mg/kg body weight once a day for 5 days and 5, 10, 20, and 30 mg/kg body weight twice a day for 2.5 days. Differences in gene expression between two differentially resistant strains and a sensitive strain were evaluated using Illumina sequencing followed by COG and KEGG analysis. RT-qPCR was carried out to validate the difference in protein translation levels. Our results demonstrated that the emergence of resistant bacteria was dose dependent within a given time interval. In the same dosage group, the appearance of resistant bacteria increased with time. The resistant bacteria showed cumulative growth, and the level of resistance increased over time. The resistant bacteria were completely inhibited when the cumulative percentage of time over a 24-h period that the drug concentration exceeded the mutant prevention concentration (MPC) (%T > MPC) was ≥52%. We also found that mecA and femX in S. aureus played a leading role in the development of resistance to amoxicillin. In conclusion, it provide references for optimizing amoxicillin regimens to treat infections caused by S. aureus.
Collapse
Affiliation(s)
- Qian Yao
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Linglin Gao
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Teng Xu
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yun Chen
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Xin Yang
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Mengmeng Han
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Xiaotao He
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Chengheng Li
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Ruigang Zhou
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yuhui Yang
- Hainan Key Laboratory of Tropical Animal Breeding and Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
12
|
Raoult D, Rolain JM. The living croquet theory: The Staphylococcus aureus paradigm. Int J Antimicrob Agents 2019; 53:724-725. [DOI: 10.1016/j.ijantimicag.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/14/2019] [Accepted: 04/07/2019] [Indexed: 11/28/2022]
|
13
|
Raoult D. Resistance to antibiotics of bacteria in tropical countries. Lancet Planet Health 2019; 3:e238-e239. [PMID: 31228994 DOI: 10.1016/s2542-5196(19)30092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Didier Raoult
- Aix Marseille Université, Microbes, Evolution, Phylogeny and Infection, Institut de Recherche pour le Développement, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.
| |
Collapse
|
14
|
Hadjadj L, Baron SA, Diene SM, Rolain JM. How to discover new antibiotic resistance genes? Expert Rev Mol Diagn 2019; 19:349-362. [PMID: 30895843 DOI: 10.1080/14737159.2019.1592678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms.
Collapse
Affiliation(s)
- Linda Hadjadj
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Sophie Alexandra Baron
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Seydina M Diene
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Jean-Marc Rolain
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France.,b IHU Méditerranée Infection , Marseille , France
| |
Collapse
|