1
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
2
|
Orton RW, Hamilton PK, Frasier TR. Genomic Evidence for the Purging of Deleterious Genetic Variation in the Endangered North Atlantic Right Whale. Evol Appl 2024; 17:e70055. [PMID: 39717435 PMCID: PMC11665784 DOI: 10.1111/eva.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The reduced genetic diversity and frequent inbreeding associated with small population size may underpin the accumulation and expression of deleterious mutations (mutation load) in some declining populations. However, demographic perturbations and inbreeding coupled with purifying selection can also purge declining populations of deleterious mutations, leading to intriguing recoveries. To better understand the links between deleterious genetic variation and population status, we assess patterns of genetic diversity, inbreeding, and mutation load across the genomes of three species of Balaenidae whale with different demographic histories and recoveries following the end of commercial whaling in the 1980s. Unlike bowhead (BH) and Southern right whales (SRW), which show signs of recent recovery, reproductive rates of the endangered North Atlantic right whale (NARW) remain lower than expected. We show that the NARW is currently marked by low genetic diversity, historical inbreeding, and a high mutation load. Still, we reveal evidence that genetic purging has reduced the frequency of highly deleterious alleles in NARW, which could increase chances of future population recovery. We also identify a suite of mutations putatively linked to congenital defects that occur at high frequencies in nulliparous NARW females but are rare in NARW with high reproductive success. These same mutations are nearly absent in BH and SRW in this study, suggesting that the purging of key variants may shape the probability of population recovery. As anthropogenic disturbances continue to reduce the sizes of many populations in nature, resolving the links between population dynamics and mutation load could become increasingly important.
Collapse
Affiliation(s)
- Richard W. Orton
- Department of BiologySaint Mary's UniversityHalifaxNova ScotiaCanada
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | | |
Collapse
|
3
|
Wu M, Wang D, Li MH, Lv F. Artificial selection shapes the lower genomic diversity and higher selective pressures on the sex chromosomes of domestic animals. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1072-1075. [PMID: 38277069 DOI: 10.1007/s11427-023-2478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 01/27/2024]
Affiliation(s)
- Meiming Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongfeng Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| | - Fenghua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Harris M, Kim BY, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. Genetics 2024; 226:iyae019. [PMID: 38366786 PMCID: PMC10990427 DOI: 10.1093/genetics/iyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Harris M, Kim B, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545888. [PMID: 38106201 PMCID: PMC10723260 DOI: 10.1101/2023.06.21.545888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The X chromosome, being hemizygous in males, is exposed one third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across six commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps, and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles California, United States of America
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nandita Garud
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Population structure of threatened caribou in western Canada inferred from genome-wide SNP data. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V, Oršanić M, Ugarković D, Vostry L, Curik I. Identification of Selection Signals on the X-Chromosome in East Adriatic Sheep: A New Complementary Approach. Front Genet 2022; 13:887582. [PMID: 35615375 PMCID: PMC9126029 DOI: 10.3389/fgene.2022.887582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.
Collapse
Affiliation(s)
- Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| | - Boris Lukic
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Milan Oršanić
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Damir Ugarković
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Luboš Vostry
- Department of Genetics and Breeding, Faculty Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| |
Collapse
|
8
|
Machová K, Málková A, Vostrý L. Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes. Genes (Basel) 2022; 13:genes13040613. [PMID: 35456419 PMCID: PMC9025449 DOI: 10.3390/genes13040613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial DNA and nonrecombinant parts of Y-chromosome DNA are a great tool for looking at a species’ past. They are inherited for generations almost unaffected because they do not participate in recombination; thus, the time of occurrence of each mutation can be estimated based on the average mutation rate. Thanks to this, male and female haplogroups guide confirming events in the distant past (potential centers of domestication, settlement of areas, trade connections) as well as in modern breeding (crossbreeding, confirmation of paternity). This research focuses mainly on the development of domestic sheep and its post-domestication expansion, which has occurred through human trade from one continent to another. So far, five mitochondrial and five Y-chromosome haplogroups and dozens of their haplotypes have been detected in domestic sheep through studies worldwide. Mitochondrial DNA variability is more or less correlated with distance from the domestication center, but variability on the recombinant region of the Y chromosome is not. According to available data, central China shows the highest variability of male haplogroups and haplotypes.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
- Correspondence:
| | - Anežka Málková
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Luboš Vostrý
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
9
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
10
|
Wang ZH, Zhu QH, Li X, Zhu JW, Tian DM, Zhang SS, Kang HL, Li CP, Dong LL, Zhao WM, Li MH. iSheep: an Integrated Resource for Sheep Genome, Variant and Phenotype. Front Genet 2021; 12:714852. [PMID: 34490043 PMCID: PMC8418083 DOI: 10.3389/fgene.2021.714852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhong-Huang Wang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Qiang-Hui Zhu
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Wei Zhu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Dong-Mei Tian
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Si-Si Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Hai-Long Kang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Cui-Ping Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Li-Li Dong
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China
| | - Wen-Ming Zhao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (China National Center for Bioinformation), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Identification and distribution of novel badnaviral sequences integrated in the genome of cacao (Theobroma cacao). Sci Rep 2021; 11:8270. [PMID: 33859254 PMCID: PMC8050207 DOI: 10.1038/s41598-021-87690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Theobroma cacao is one of the most economically important tropical trees, being the source of chocolate. As part of an ongoing study to understand the diversity of the badnavirus complex, responsible for the cacao swollen shoot virus disease in West Africa, evidence was found recently of virus-like sequences in asymptomatic cacao plants. The present study exploited the wealth of genomic resources in this crop, and combined bioinformatic, molecular, and genetic approaches to report for the first time the presence of integrated badnaviral sequences in most of the cacao genetic groups. These sequences, which we propose to name eTcBV for endogenous T. cacao bacilliform virus, varied in type with each predominating in a specific genetic group. A diagnostic multiplex PCR method was developed to identify the homozygous or hemizygous condition of one specific insert, which was inherited as a single Mendelian trait. These data suggest that these integration events occurred before or during the species diversification in Central and South America, and prior to its cultivation in other regions. Such evidence of integrated sequences is relevant to the management of cacao quarantine facilities and may also aid novel methods to reduce the impact of such viruses in this crop.
Collapse
|
12
|
British Sheep Breeds as a Part of World Sheep Gene Pool Landscape: Looking into Genomic Applications. Animals (Basel) 2021; 11:ani11040994. [PMID: 33916207 PMCID: PMC8103502 DOI: 10.3390/ani11040994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Sheep farming has been an important sector of the UK's economy and rural life for many centuries. It is the favored source of wool, meat and milk products. In the era of exponential progress in genomic technologies, we can now address the questions of what is special about UK sheep breed genotypes and how they differ genetically form one another and from other countries. We can reflect how their natural history has been determined at the level of their genetic code and what traces have been left in their genomes because of selection for phenotypic traits. These include adaptability to certain environmental conditions and management, as well as resistance to disease. Application of these advancements in genetics and genomics to study sheep breeds of British domestic selection has begun and will continue in order to facilitate conservation solutions and production improvement.
Collapse
|
13
|
Dzomba EF, Chimonyo M, Pierneef R, Muchadeyi FC. Runs of homozygosity analysis of South African sheep breeds from various production systems investigated using OvineSNP50k data. BMC Genomics 2021; 22:7. [PMID: 33407115 PMCID: PMC7788743 DOI: 10.1186/s12864-020-07314-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Background Population history, production system and within-breed selection pressure impacts the genome architecture resulting in reduced genetic diversity and increased frequency of runs of homozygosity islands. This study tested the hypothesis that production systems geared towards specific traits of importance or natural or artificial selection pressures influenced the occurrence and distribution of runs of homozygosity (ROH) in the South African sheep population. The Illumina OvineSNP50 BeadChip was used to genotype 400 sheep belonging to 13 breeds from South Africa representing mutton, pelt and mutton and wool dual-purpose breeds, including indigenous non-descript breeds that are reared by smallholder farmers. To get more insight into the autozygosity and distribution of ROH islands of South African breeds relative to global populations, 623 genotypes of sheep from worldwide populations were included in the analysis. Runs of homozygosity were computed at cut-offs of 1–6 Mb, 6–12 Mb, 12–24 Mb, 24–48 Mb and > 48 Mb, using the R package detectRUNS. The Golden Helix SVS program was used to investigate the ROH islands. Results A total of 121,399 ROH with mean number of ROH per animal per breed ranging from 800 (African White Dorper) to 15,097 (Australian Poll Dorset) were obtained. Analysis of the distribution of ROH according to their size showed that, for all breeds, the majority of the detected ROH were in the short (1–6 Mb) category (88.2%). Most animals had no ROH > 48 Mb. Of the South African breeds, the Nguni and the Blackhead Persian displayed high ROH based inbreeding (FROH) of 0.31 ± 0.05 and 0.31 ± 0.04, respectively. Highest incidence of common runs per SNP across breeds was observed on chromosome 10 with over 250 incidences of common ROHs. Mean proportion of SNPs per breed per ROH island ranged from 0.02 ± 0.15 (island ROH224 on chromosome 23) to 0.13 ± 0.29 (island ROH175 on chromosome 15). Seventeen (17) of the islands had SNPs observed in single populations (unique ROH islands). The MacArthur Merino (MCM) population had five unique ROH islands followed by Blackhead Persian and Nguni with three each whilst the South African Mutton Merino, SA Merino, White Vital Swakara, Karakul, Dorset Horn and Chinese Merino each had one unique ROH island. Genes within ROH islands were associated with predominantly metabolic and immune response traits and predomestic selection for traits such as presence or absence of horns. Conclusions Overall, the frequency and patterns of distribution of ROH observed in this study corresponds to the breed history and implied selection pressures exposed to the sheep populations under study. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07314-2.
Collapse
Affiliation(s)
- E F Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| | - M Chimonyo
- Discipline of Animal & Poultry Science; School of Agricultural, Earth & Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - R Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, South Africa
| | - F C Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, South Africa
| |
Collapse
|
14
|
Buckley RM, Davis BW, Brashear WA, Farias FHG, Kuroki K, Graves T, Hillier LW, Kremitzki M, Li G, Middleton RP, Minx P, Tomlinson C, Lyons LA, Murphy WJ, Warren WC. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet 2020; 16:e1008926. [PMID: 33090996 PMCID: PMC7581003 DOI: 10.1371/journal.pgen.1008926] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models. The practice of genomic medicine is predicated on the availability of a high quality reference genome and an understanding of the impact of genome variation. Such resources have lead to countless discoveries in humans, however by working exclusively within the framework of human genetics, our potential for understanding diseases biology is limited, as similar analyses in other species have often lead to novel insights. The generation of Felis_catus_9.0, a new high quality reference genome for the domestic cat, helps facilitate the expansion of genomic medicine into the Felis lineage. Using Felis_catus_9.0 we analyze the landscape of genomic variation from a collection of 54 cats within the context of human gene constraint. The distribution of variant impacts in cats is correlated with patterns of gene constraint in humans, indicating the utility of this reference for identifying novel mutations that cause phenotypes relevant to human and cat health. Moreover, structural variant analysis revealed a novel variant for feline dwarfism in UGDH, a gene that has not been associated with dwarfism in any other species, suggesting a role for UGDH in cases of undiagnosed dwarfism in humans.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley A. Brashear
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Kei Kuroki
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tina Graves
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - LaDeana W. Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | | | - Patrick Minx
- Donald Danforth Plant Science, St Louis, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley C. Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Phung TN, Wayne RK, Wilson MA, Lohmueller KE. Complex patterns of sex-biased demography in canines. Proc Biol Sci 2020; 286:20181976. [PMID: 31113325 DOI: 10.1098/rspb.2018.1976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demographic history of dogs is complex, involving multiple bottlenecks, admixture events and artificial selection. However, existing genetic studies have not explored variance in the number of reproducing males and females, and whether it has changed across evolutionary time. While male-biased mating practices, such as male-biased migration and multiple paternity, have been observed in wolves, recent breeding practices could have led to female-biased mating patterns in breed dogs. For example, breed dogs are thought to have experienced a popular sire effect, where a small number of males father many offspring with a large number of females. Here we use genetic variation data to test how widespread sex-biased mating practices in canines are during different evolutionary time points. Using whole-genome sequence data from 33 dogs and wolves, we show that patterns of diversity on the X chromosome and autosomes are consistent with a higher number of reproducing males than females over ancient evolutionary history in both dogs and wolves, suggesting that mating practices did not change during early dog domestication. By contrast, since breed formation, we found evidence for a larger number of reproducing females than males in breed dogs, consistent with the popular sire effect. Our results confirm that canine demography has been complex, with opposing sex-biased processes occurring throughout their history. The signatures observed in genetic data are consistent with documented sex-biased mating practices in both the wild and domesticated populations, suggesting that these mating practices are pervasive.
Collapse
Affiliation(s)
- Tanya N Phung
- 1 Interdepartmental Program in Bioinformatics, University of California , Los Angeles, CA 90095 , USA
| | - Robert K Wayne
- 2 Department of Ecology and Evolutionary Biology, University of California , Los Angeles, CA 90095 , USA
| | - Melissa A Wilson
- 4 School of Life Sciences and Center for Evolution and Medicine, The Biodesign Institute, Arizona State University , Tempe, AZ 85281 , USA
| | - Kirk E Lohmueller
- 1 Interdepartmental Program in Bioinformatics, University of California , Los Angeles, CA 90095 , USA.,2 Department of Ecology and Evolutionary Biology, University of California , Los Angeles, CA 90095 , USA.,3 Department of Human Genetics, David Geffen School of Medicine, University of California , Los Angeles, CA 90095 , USA
| |
Collapse
|
16
|
Luigi-Sierra MG, Mármol-Sánchez E, Amills M. Comparing the diversity of the casein genes in the Asian mouflon and domestic sheep. Anim Genet 2020; 51:470-475. [PMID: 32281138 DOI: 10.1111/age.12937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
We aimed to determine whether casein variants that are currently segregating in ovine populations existed before the domestication of sheep or, to the contrary, if their emergence is much more recent. To this end, we have retrieved whole-genome sequences from Iranian and domestic sheep from Africa, Europe, South and East Asia and West Asia. Population structure analysis based on 55,352,935 SNPs revealed a clear separation between Iranian mouflons and domestic sheep. Moreover, we also observed a strong genetic differentiation between Iranian mouflons sampled in geographic areas close to Tehran and Tabriz. Based on sequence data, hundreds of SNPs mapping to the casein αS1 (CSN1S1, 248 SNPs), casein αS2 (CSN1S2, 268 SNPs), casein ß (CSN2, 146 SNPs) and casein κ (CSN3, 112 SNPs) genes were identified. Approximately 25-63.02% of the casein variation was shared between Iranian mouflons and domestic sheep, and the four domestic sheep populations also shared 44.2-57.4% of the casein polymorphic sites. These findings suggest that an important fraction of the casein variation present in domestic sheep was already segregating in the mouflon prior to its domestication. Genomic studies performed in horses and dogs are consistent with this view, suggesting that much of the diversity that we currently detect in domestic animals comes from standing variation already segregating in their wild ancestors.
Collapse
Affiliation(s)
- M G Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - E Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
17
|
Li G, Figueiró HV, Eizirik E, Murphy WJ. Recombination-Aware Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species. Mol Biol Evol 2020; 36:2111-2126. [PMID: 31198971 PMCID: PMC6759079 DOI: 10.1093/molbev/msz139] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of postspeciation gene flow that can produce a mosaic of phylogenetic signals that interact with recombinational variation. Here, we tested the validity of this assumption with a phylogenomic analysis of 27 species of the cat family, assessing local effects of recombination rate on species tree inference and divergence time estimation across their genomes. We found that the prevailing phylogenetic signal within the autosomes is not always representative of the most probable speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within regions of low recombination, and notably enriched within large X chromosome recombination cold spots that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ∼40%. We conclude that existing phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic architecture of phylogenetic signal relative to recombination rate and its interplay with historical hybridization.
Collapse
Affiliation(s)
- Gang Li
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Henrique V Figueiró
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - Eduardo Eizirik
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| |
Collapse
|
18
|
Gering E, Incorvaia D, Henriksen R, Wright D, Getty T. Maladaptation in feral and domesticated animals. Evol Appl 2019; 12:1274-1286. [PMID: 31417614 PMCID: PMC6691326 DOI: 10.1111/eva.12784] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Selection regimes and population structures can be powerfully changed by domestication and feralization, and these changes can modulate animal fitness in both captive and natural environments. In this review, we synthesize recent studies of these two processes and consider their impacts on organismal and population fitness. Domestication and feralization offer multiple windows into the forms and mechanisms of maladaptation. Firstly, domestic and feral organisms that exhibit suboptimal traits or fitness allow us to identify their underlying causes within tractable research systems. This has facilitated significant progress in our general understandings of genotype-phenotype relationships, fitness trade-offs, and the roles of population structure and artificial selection in shaping domestic and formerly domestic organisms. Additionally, feralization of artificially selected gene variants and organisms can reveal or produce maladaptation in other inhabitants of an invaded biotic community. In these instances, feral animals often show similar fitness advantages to other invasive species, but they are also unique in their capacities to modify natural ecosystems through introductions of artificially selected traits. We conclude with a brief consideration of how emerging technologies such as genome editing could change the tempos, trajectories, and ecological consequences of both domestication and feralization. In addition to providing basic evolutionary insights, our growing understanding of mechanisms through which artificial selection can modulate fitness has diverse and important applications-from enhancing the welfare, sustainability, and efficiency of agroindustry, to mitigating biotic invasions.
Collapse
Affiliation(s)
- Eben Gering
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior ProgramMichigan State UniversityEast LansingMichigan
| | - Darren Incorvaia
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior ProgramMichigan State UniversityEast LansingMichigan
| | - Rie Henriksen
- IIFM Biology and AVIAN Behavioural Genomics and Physiology GroupLinköping UniversitySweden
| | - Dominic Wright
- IIFM Biology and AVIAN Behavioural Genomics and Physiology GroupLinköping UniversitySweden
| | - Thomas Getty
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior ProgramMichigan State UniversityEast LansingMichigan
| |
Collapse
|
19
|
E GX, Ma YH, Chu MX, Hong QH, Huang YF. Current genetic diversity in eight local Chinese sheep populations. Mol Biol Rep 2018; 46:1307-1311. [PMID: 30560407 DOI: 10.1007/s11033-018-4445-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
China has numerous local domestic sheep breeds. In this study, the genetic diversity of eight sheep populations was estimated using 17 microsatellites. Knowledge of such diversity provides novel insight into the degree of breed protection needed and the prediction of hybrid advantage. In total, 17 microsatellites were genotyped in 186 individuals from eight populations. The mean number of alleles (± SD) ranged from 3.71 ± 1.36 in Zhaotong sheep to 11.94 ± 3.58 in small-tailed Han sheep. The observed heterozygote frequency (± SD) within a population ranged from 0.482 ± 0.025 in Zhaotong sheep to 0.664 ± 0.023 in Tibetan sheep. In addition, using pairwise difference (FST) analysis, the highest within-population diversity was observed in Tibetan sheep (πX = 12.8098) and small-tailed Han (πX = 12.67873), and the lowest diversity was observed in Zhaotong sheep (πX = 7.90337). The results for genetic divergence between populations indicated that the populations were significantly different (P < 0.05) based on the average number of pairwise differences between populations (πXY) and the corrected average pairwise differences. Both phylogenetic networks and structure analysis showed that these eight populations were separated into three clusters in accordance with their geographical habitat, except Tibetan and Hu sheep. In short, we genotyped eight local Chinese sheep populations using 17 microsatellites, and the results indicated that their current genetic diversity is decreasing and that new conservation strategies are needed. In addition, significant genetic differences between populations could be used in cross breeding.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, No. 2 Tiansheng Road, Chongqing, 400716, China.
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, No. 2 Tiansheng Road, Chongqing, 400716, China
| |
Collapse
|