1
|
Xue W, Hong J, Wang T. The evolutionary landscape of prokaryotic chromosome/plasmid balance. Commun Biol 2024; 7:1434. [PMID: 39496780 PMCID: PMC11535066 DOI: 10.1038/s42003-024-07167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
The balance between chromosomal and plasmid DNAs determines the genomic plasticity of prokaryotes. Natural selections, acting on the level of organisms or plasmids, shape the abundances of plasmid DNAs in prokaryotic genomes. Despite the importance of plasmids in health and engineering, there have been rare systematic attempts to quantitatively model and predict the determinants underlying the strength of different selection forces. Here, we develop a metabolic flux model that describes the intracellular resource competition between chromosomal and plasmid-encoded reactions. By coarse graining, this model predicts a landscape of natural selections on chromosome/plasmid balance, which is featured by the tradeoff between phenotypic and non-phenotypic selection pressures. This landscape is further validated by the observed pattern of plasmid distributions in the vast collection of prokaryotic genomes retrieved from the NCBI database. Our results establish a universal paradigm to understand the prokaryotic chromosome/plasmid interplay and provide insights into the evolutionary origin of plasmid diversity.
Collapse
Affiliation(s)
- Wenzhi Xue
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Sharon BM, Hulyalkar NV, Zimmern PE, Palmer KL, De Nisco NJ. Inter-species diversity and functional genomic analyses of closed genome assemblies of clinically isolated, megaplasmid-containing Enterococcus raffinosus Er676 and ATCC49464. Access Microbiol 2023; 5:acmi000508.v3. [PMID: 37424546 PMCID: PMC10323788 DOI: 10.1099/acmi.0.000508.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 07/11/2023] Open
Abstract
Enterococcus raffinosus is an understudied member of its genus possessing a characteristic megaplasmid contributing to a large genome size. Although less commonly associated with human infection compared to other enterococci, this species can cause disease and persist in diverse niches such as the gut, urinary tract, blood and environment. Few complete genome assemblies have been published to date for E. raffinosus . In this study, we report the complete assembly of the first clinical urinary E. raffinosus strain, Er676, isolated from a postmenopausal woman with history of recurrent urinary tract infection. We additionally completed the assembly of clinical type strain ATCC49464. Comparative genomic analyses reveal inter-species diversity driven by large accessory genomes. The presence of a conserved megaplasmid indicates it is a ubiquitous and vital genetic feature of E. raffinosus . We find that the E. raffinosus chromosome is enriched for DNA replication and protein biosynthesis genes while the megaplasmid is enriched for transcription and carbohydrate metabolism genes. Prophage analysis suggests that diversity in the chromosome and megaplasmid sequences arises, in part, from horizontal gene transfer. Er676 demonstrated the largest genome size reported to date for E. raffinosus and the highest probability of human pathogenicity. Er676 also possesses multiple antimicrobial resistance genes, of which all but one are encoded on the chromosome, and has the most complete prophage sequences. Complete assembly and comparative analyses of the Er676 and ATCC49464 genomes provide important insight into the inter-species diversity of E. raffinosus that gives it its ability to colonize and persist in the human body. Investigating genetic factors that contribute to the pathogenicity of this species will provide valuable tools to combat diseases caused by this opportunistic pathogen.
Collapse
Affiliation(s)
- Belle M. Sharon
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Neha V. Hulyalkar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Nicole J. De Nisco
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Brumwell SL, Van Belois KD, Giguere DJ, Edgell DR, Karas BJ. Conjugation-Based Genome Engineering in Deinococcus radiodurans. ACS Synth Biol 2022; 11:1068-1076. [PMID: 35254818 PMCID: PMC8939323 DOI: 10.1021/acssynbio.1c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deinococcus radiodurans has become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from E. coli to D. radiodurans, allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers. Using this method with nonreplicating plasmids, we developed a protocol for creating sequential gene deletions in D. radiodurans by targeting restriction-modification genes. Importantly, we demonstrated a conjugation-based method for cloning the large (178 kb), high G+C content MP1 megaplasmid from D. radiodurans in E. coli. The conjugation-based tools described here will facilitate the development of D. radiodurans strains with synthetic genomes for biological studies and industrial applications.
Collapse
Affiliation(s)
- Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Katherine D Van Belois
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
Smith BA, Dougherty K, Clark M, Baltrus DA. Experimental evolution of the megaplasmid pMPPla107 in Pseudomonas stutzeri enables identification of genes contributing to sensitivity to an inhibitory agent. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200474. [PMID: 34839711 PMCID: PMC8628073 DOI: 10.1098/rstb.2020.0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Horizontally transferred elements, such as plasmids, can burden host cells with various metabolic and fitness costs and may lead to other potentially detrimental phenotypic effects. Acquisition of the Pseudomonas syringae megaplasmid pMPPla107 by various Pseudomonads causes sensitivity to a growth-inhibiting substance that is produced in cultures by Pseudomonads during growth under standard laboratory conditions. After approximately 500 generations of laboratory passage of Pseudomonas stutzeri populations containing pMPPla107, strains from two out of six independent passage lines displayed resistance to this inhibitory agent. Resistance was transferable and is, therefore, associated with mutations occurring on pMPPla107. Resequencing experiments demonstrated that resistance is likely due to a large deletion on the megaplasmid in one line, and to a nonsynonymous change in an uncharacterized megaplasmid locus in the other strain. We further used allele exchange experiments to confirm that resistance is due to this single amino acid change in a previously uncharacterized megaplasmid protein, which we name SkaA. These results provide further evidence that costs and phenotypic changes associated with horizontal gene transfer can be compensated through single mutational events and emphasize the power of experimental evolution and resequencing to better understand the genetic basis of evolved phenotypes. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Brian A. Smith
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - Kevin Dougherty
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 5403369, USA
| |
Collapse
|
5
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Baltrus DA, Smith C, Derrick M, Leligdon C, Rosenthal Z, Mollico M, Moore A, Clark M. Genomic Background Governs Opposing Responses to Nalidixic Acid upon Megaplasmid Acquisition in Pseudomonas. mSphere 2021; 6:e00008-21. [PMID: 33597171 PMCID: PMC8544880 DOI: 10.1128/msphere.00008-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer is a significant driver of evolutionary dynamics across microbial populations. Although the benefits of the acquisition of new genetic material are often quite clear, experiments across systems have demonstrated that gene transfer events can cause significant phenotypic changes and entail fitness costs in a way that is dependent on the genomic and environmental context. Here, we test for the generality of one previously identified cost, sensitization of cells to the antibiotic nalidixic acid after acquisition of an ∼1-Mb megaplasmid, across Pseudomonas strains and species. Overall, we find that the presence of this megaplasmid sensitizes many different Pseudomonas strains to nalidixic acid but that this same horizontal gene transfer event increases resistance of Pseudomonas putida KT2440 to nalidixic acid across assays as well as to ciprofloxacin under competitive conditions. These phenotypic results are not easily explained away as secondary consequences of overall fitness effects and appear to occur independently of another cost associated with this megaplasmid, sensitization to higher temperatures. Lastly, we draw parallels between these reported results and the phenomenon of sign epistasis for de novo mutations and explore how context dependence of effects of plasmid acquisition could impact overall evolutionary dynamics and the evolution of antimicrobial resistance.IMPORTANCE Numerous studies have demonstrated that gene transfer events (e.g., plasmid acquisition) can entail a variety of costs that arise as by-products of the incorporation of foreign DNA into established physiological and genetic systems. These costs can be ameliorated through evolutionary time by the occurrence of compensatory mutations, which stabilize the presence of a horizontally transferred region within the genome but which also may skew future adaptive possibilities for these lineages. Here, we demonstrate another possible outcome, that phenotypic changes arising as a consequence of the same horizontal gene transfer (HGT) event are costly to some strains but may actually be beneficial in other genomic backgrounds under the right conditions. These results provide a new viewpoint for considering conditions that promote plasmid maintenance and highlight the influence of genomic and environmental contexts when considering amelioration of fitness costs after HGT events.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Caitlin Smith
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - MacKenzie Derrick
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Courtney Leligdon
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Zoe Rosenthal
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Madison Mollico
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew Moore
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Botelho J, Lood C, Partridge SR, van Noort V, Lavigne R, Grosso F, Peixe L. Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Emerg Microbes Infect 2019; 8:1186-1194. [PMID: 31381486 PMCID: PMC6713103 DOI: 10.1080/22221751.2019.1648182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance.
Collapse
Affiliation(s)
- João Botelho
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Cédric Lood
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Sally R Partridge
- d Centre for Microbiology and Infectious Diseases, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital , Sydney , Australia
| | - Vera van Noort
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,e Institute of Biology, Leiden University , Leiden , The Netherlands
| | - Rob Lavigne
- c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Filipa Grosso
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Luísa Peixe
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| |
Collapse
|