1
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
2
|
Oudemans PV, Alexander HM, Antonovics J, Altizer S, Thrall PH, Rose L. The distribution of mating-type bias in natural populations of the anther-smutUstilago violaceaonSilene albain Virginia. Mycologia 2018. [DOI: 10.1080/00275514.1998.12026921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- P. V. Oudemans
- Departments of Botany, and Systematics and Ecology, University of Kansas, Lawrence, Kansas 66045
| | - H. M. Alexander
- Departments of Botany, and Systematics and Ecology, University of Kansas, Lawrence, Kansas 66045
| | - J. Antonovics
- Department of Botany, Duke University, Durham, North Carolina 27708
| | - S. Altizer
- Department of Botany, Duke University, Durham, North Carolina 27708
| | - P. H. Thrall
- Department of Botany, Duke University, Durham, North Carolina 27708
| | - L. Rose
- Department of Botany, Duke University, Durham, North Carolina 27708
| |
Collapse
|
3
|
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. THE PLANT CELL 2017; 29:2498-2518. [PMID: 28978758 PMCID: PMC5774583 DOI: 10.1105/tpc.17.00659] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
The fast-growing biflagellated single-celled chlorophyte Chlamydomonas reinhardtii is the most widely used alga in basic research. The physiological functions of the 18 sensory photoreceptors are of particular interest with respect to Chlamydomonas development and behavior. Despite the demonstration of gene editing in Chlamydomonas in 1995, the isolation of mutants lacking easily ascertained newly acquired phenotypes remains problematic due to low DNA recombination efficiency. We optimized gene-editing protocols for several Chlamydomonas strains (including wild-type CC-125) using zinc-finger nucleases (ZFNs), genetically encoded CRISPR/associated protein 9 (Cas9) from Staphylococcus aureus and Streptococcus pyogenes, and recombinant Cas9 and developed protocols for rapidly isolating nonselectable gene mutants. Using this technique, we disrupted the photoreceptor genes COP1/2, COP3 (encoding channelrhodopsin 1 [ChR1]), COP4 (encoding ChR2), COP5, PHOT, UVR8, VGCC, MAT3, and aCRY and created the chr1 chr2 and uvr8 phot double mutants. Characterization of the chr1, chr2, and mat3 mutants confirmed the value of photoreceptor mutants for physiological studies. Genes of interest were disrupted in 5 to 15% of preselected clones (∼1 out of 4000 initial cells). Using ZFNs, genes were edited in a reliable, predictable manner via homologous recombination, whereas Cas9 primarily caused gene disruption via the insertion of cotransformed DNA. These methods should be widely applicable to research involving green algae.
Collapse
Affiliation(s)
- Andre Greiner
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Heide Evers
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Irina Sizova
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| |
Collapse
|
4
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
5
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
6
|
Nishimura Y, Shikanai T, Nakamura S, Kawai-Yamada M, Uchimiya H. Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:2401-14. [PMID: 22715041 PMCID: PMC3406891 DOI: 10.1105/tpc.112.097865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 05/24/2023]
Abstract
The isogamous green alga Chlamydomonas reinhardtii has emerged as a premier model for studying the genetic regulation of fertilization and sexual development. A key regulator is known to be a homeoprotein gene, GAMETE-SPECIFIC PLUS1 (GSP1), which triggers the zygotic program. In this study, we isolated a mutant, biparental31 (bp31), which lacks GSP1. bp31 mt+ gametes fuse normally to form zygotes, but the sexual development of the resulting diploid cell is arrested and pellicle/zygospore/tetrad formation is abolished. The uniparental inheritance of chloroplast (cp) and mitochondrial (mt) DNA (cytoplasmic inheritance) was also impaired. bp31 has a deletion of ∼60 kb on chromosome 2, including GSP1. The mutant phenotype was not rescued by transformation with GSP1 alone but could be rescued by the cotransformation with GSP1 and another gene, INOSITOL MONOPHOSPHATASE-LIKE1, which is involved in various cellular processes, including the phosphatidylinositol signaling pathway. This study confirms the importance of Gsp1 in mediating the zygotic program, including the uniparental inheritance of cp/mtDNA. Moreover, the results also suggest a role for inositol metabolism in the sexual developmental program.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
7
|
Hallmann A. Evolution of reproductive development in the volvocine algae. ACTA ACUST UNITED AC 2010; 24:97-112. [PMID: 21174128 PMCID: PMC3098969 DOI: 10.1007/s00497-010-0158-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/27/2010] [Indexed: 11/26/2022]
Abstract
The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed.
Collapse
Affiliation(s)
- Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
8
|
Nishimura Y. Uniparental inheritance of cpDNA and the genetic control of sexual differentiation in Chlamydomonas reinhardtii. JOURNAL OF PLANT RESEARCH 2010; 123:149-162. [PMID: 20196233 DOI: 10.1007/s10265-009-0292-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An intriguing feature of most eukaryotes is that chloroplast (cp) and mitochondrial (mt) genomes are inherited almost exclusively from one parent. Uniparental inheritance of cp/mt genomes was long thought to be a passive outcome, based on the fact that eggs contain multiple numbers of organelles, while male gametes contribute,at best, only a few cp/mtDNA. However, the process is likely to be more dynamic because uniparental inheritance occurs in organisms that produce gametes of identical sizes (isogamous). In Chlamydomonas reinhardtii,the uniparental inheritance of cp/mt genomes is achieved by a series of mating type-controlled events that actively eliminate the mating type minus (mt-) cpDNA.The method by which Chlamydomonas selectively degrades mt- cpDNA has long fascinated researchers, and is the subject of this review.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Sciences, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japane.
| |
Collapse
|
9
|
Nakamura S. Paternal inheritance of mitochondria in Chlamydomonas. JOURNAL OF PLANT RESEARCH 2010; 123:163-170. [PMID: 20069335 DOI: 10.1007/s10265-009-0295-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
To analyze mitochondrial DNA (mtDNA)inheritance, differences in mtDNA between Chlamydomonas reinhardtii and Chlamydomonas smithii, respiration deficiency and antibiotic resistance were used to distinguish mtDNA origins. The analyses indicated paternal inheritance. However, these experiments raised questions regarding whether paternal inheritance occurred normally.Mitochondrial nucleoids were observed in living zygotes from mating until 3 days after mating and then until progeny formation. However, selective disappearance of nucleoids was not observed. Subsequently, experimental serial backcrosses between the two strains demonstrated strict paternal inheritance. The fate of mt+ and mt- mtDNA was followed using the differences in mtDNA between the two strains. The slow elimination of mt+ mtDNA through zygote maturation in darkness was observed, and later the disappearance of mt+ mtDNA was observed at the beginning of meiosis. To explain the different fates of mtDNA, methylation status was investigated; however, no methylation was detected. Variously constructed diploid cells showed biparental inheritance. Thus, when the mating process occurs normally, paternal inheritance occurs. Mutations disrupting mtDNA inheritance have not yet been isolated. Mutations that disrupt maternal inheritance of chloroplast DNA (cpDNA) do not disrupt inheritance of mtDNA. The genes responsible for mtDNA inheritance are different from those of chloroplasts.
Collapse
Affiliation(s)
- Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan.
| |
Collapse
|
10
|
Kianianmomeni A, Nematollahi G, Hallmann A. A gender-specific retinoblastoma-related protein in Volvox carteri implies a role for the retinoblastoma protein family in sexual development. THE PLANT CELL 2008; 20:2399-2419. [PMID: 18790828 PMCID: PMC2570726 DOI: 10.1105/tpc.107.057836] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 08/18/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
Here, we describe the cloning and characterization of RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) from the green alga Volvox carteri. RBR1 expression increases substantially during embryogenesis and in response to the sex-inducer glycoprotein, but it decreases significantly under heat stress. While RBR1 is expressed in gonidia (asexual reproductive cells) and embryos, the largest proportion of RBR1 mRNA is found in parental somatic cells. The presence of 4 splice variants and 15 potential cyclin-dependent kinase phosphorylation sites suggests that RBR1 is subject to control at the posttranscriptional and posttranslational levels. Surprisingly, RBR1 is a gender-specific gene, mapping exclusively to the female mating-type locus. A procedure for stable nuclear transformation of males was established to generate RBR1-expressing males. These transformants exhibit enlarged reproductive cells, altered growth characteristics, and a prolonged embryogenesis. The results suggest that a functionally related analog of RBR1 exists in males. The reason for the divergent evolution of RBRs in females and males appears to be based on sexual development: males and females respond to the same sex-inducer with different cleavage programs and substantial differences in cellular differentiation. Thus, the gender-specific presence of RBR1 provides evidence for an additional, novel role for retinoblastoma family proteins in sexual development.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
11
|
Vlček D, Ševčovičová A, Sviežená B, Gálová E, Miadoková E. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Genet 2007; 53:1-22. [DOI: 10.1007/s00294-007-0163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/08/2007] [Accepted: 10/20/2007] [Indexed: 01/12/2023]
|
12
|
Goodenough U, Lin H, Lee JH. Sex determination in Chlamydomonas. Semin Cell Dev Biol 2007; 18:350-61. [PMID: 17643326 DOI: 10.1016/j.semcdb.2007.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 02/07/2023]
Abstract
The sex-determination system of the unicellular green alga, Chlamydomonas reinhardtii, is governed by genes in the mating-type (MT) locus and entails additional genes located in autosomes. Gene expression is initiated by nitrogen starvation, and cells differentiate into plus or minus gametes within 6h. Reviewed is our current understanding of gametic differentiation and fertilization, initiation of zygote development, and the uniparental inheritance of organelle genomes.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, MO 63130, United States.
| | | | | |
Collapse
|
13
|
Abstract
A key pathway that controls both cell division and differentiation in animal cells is mediated by the retinoblastoma (RB) family of tumor suppressors, which gate the passage of cells from G(1) to S and through S phase. The role(s) of the RB pathway in plants are not yet clearly defined, nor has there been any evidence for its presence in unicellular organisms. Here we have identified an RB homolog encoded by the mat3 gene in Chlamydomonas reinhardtii, a unicellular green alga in the land plant lineage. Chlamydomonas cells normally grow to many times their original size during a prolonged G(1) and then undergo multiple alternating rounds of S phase and mitosis to produce daughter cells of uniform size. mat3 mutants produce small daughter cells and show defects in two size-dependent cell cycle controls: They initiate the cell cycle at a below-normal size, and they undergo extra rounds of S phase/mitosis. Unlike mammalian RB mutants, mat3 mutants do not have a shortened G(1), do not enter S phase prematurely, and can exit the cell cycle and differentiate normally, indicating that the RB pathway in Chlamydomonas has a different role than in animals.
Collapse
Affiliation(s)
- J G Umen
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
| | | |
Collapse
|
14
|
|
15
|
Armbrust EV, Ibrahim A, Goodenough UW. A mating type-linked mutation that disrupts the uniparental inheritance of chloroplast DNA also disrupts cell-size control in Chlamydomonas. Mol Biol Cell 1995; 6:1807-18. [PMID: 8590807 PMCID: PMC301334 DOI: 10.1091/mbc.6.12.1807] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An intriguing feature of early zygote development in Chlamydomonas reinhardtii is the active elimination of chloroplast DNA from the mating-type minus parent due presumably to the action of a zygote-specific nuclease. Meiotic progeny thus inherit chloroplast DNA almost exclusively from the mating-type plus parent. The plus-linked nuclear mutation mat3 prevents this selective destruction of minus chloroplast DNA and generates progeny that display a biparental inheritance pattern. Here we show that the mat3 mutation creates additional phenotypes not previously described: the cells are much smaller than wild type and they possess substantially reduced amounts of both mitochondrial and chloroplast DNA. We propose that the primary defect of the mat3 mutation is a disruption of cell-size control and that the inhibition of the uniparental transmission of chloroplast genomes is a secondary consequence of the reduced amount of chloroplast DNA in the mat3 parent.
Collapse
Affiliation(s)
- E V Armbrust
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
16
|
Ferris PJ, Goodenough UW. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 1994; 76:1135-45. [PMID: 8137428 DOI: 10.1016/0092-8674(94)90389-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mating-type locus of Chlamydomonas reinhardtii exists as two apparent alleles (mt+ and mt-) that control mating in haploid gametes and sporulation and meiosis in diploid mt+/mt- zygotes. Twelve genes, seven unrelated to life cycle transitions, are tightly linked to mt, suggesting that the locus exerts recombinational suppression. A 1.1 Mb chromosome walk from a gene linked to mt demonstrates that the mt+ and mt- loci carry four intrachromosomal translocations, two inversions, and large deletions and duplications within a 190 kb sector, presumably accounting for the recombinational suppression that extends through 640 kb of flanking homologous DNA. The rearranged domain also carries blocks of mt(+)- and mt(-)-specific sequences, at least one of which includes a mt(+)-specific gene. The locus has the properties of an incipient sex chromosome.
Collapse
Affiliation(s)
- P J Ferris
- Biology Department, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
17
|
VanWinkle-Swift K, Hoffman R, Shi L, Parker S. A suppressor of a mating-type limited zygotic lethal allele also suppresses uniparental chloroplast gene transmission in Chlamydomonas monoica. Genetics 1994; 136:867-77. [PMID: 8005441 PMCID: PMC1205892 DOI: 10.1093/genetics/136.3.867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Uniparental inheritance of Chlamydomonas chloroplast genes is thought to involve modification of maternal (mt+) chloroplast genomes to protect against a nuclease that is activated after gamete fusion. The mating-type limited mtl-1 mutant strain of Chlamydomonas monoica is unable to protect mt(+)-derived chloroplast DNA. Zygotes homozygous for mtl-1 lose all chloroplast DNA and fail to germinate. We have selected for suppression of this zygote-specific lethality, and have obtained 20 mutant strains that produce viable homozygotes despite the continued presence of the mtl-1 allele. Genetic analysis indicates that the suppressor mutations are all recessive alleles at a single locus (sup-1) which is unlinked to mtl-1. Crosses between sup-1 strains carrying distinctive chloroplast antibiotic resistance markers also show predominantly biparental chloroplast gene transmission. Chloroplast nucleoids of both parental origins (stained with the DNA-specific fluorochrome, DAPI) are retained in the zygotes homozygous for sup-1. The data are compatible with the idea that the sup-1 (suppressor of uniparental inheritance) locus may encode a chloroplast DNA nuclease that is expressed from both parental genomes.
Collapse
Affiliation(s)
- K VanWinkle-Swift
- Department of Biological Sciences, Northern Arizona University, Flagstaff 86011
| | | | | | | |
Collapse
|
18
|
Armbrust EV, Ferris PJ, Goodenough UW. A mating type-linked gene cluster expressed in Chlamydomonas zygotes participates in the uniparental inheritance of the chloroplast genome. Cell 1993; 74:801-11. [PMID: 8374951 DOI: 10.1016/0092-8674(93)90460-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A characteristic feature of early zygote development in Chlamydomonas is the selective degradation of chloroplast DNA from the mating type minus parent. The zygote-specific gene cluster ezy-1 is linked to the mating type locus and is transcribed almost immediately upon zygote formation. We show here that the acidic Ezy-1 polypeptide is rapidly transported to both the plus and minus chloroplasts, where it interacts with each chloroplast nucleoid. Expression of ezy-1 is selectively inhibited when plus, but not minus, gametes are briefly ultraviolet irradiated just prior to mating, a treatment known to disrupt the uniparental inheritance of chloroplast traits. We propose that the Ezy-1 polypeptide participates in the destruction of the minus chloroplast DNA in zygotes and thus the uniparental inheritance of chloroplast traits. The ezy-1 gene represents a valuable molecular probe for dissecting mechanisms underlying organelle inheritance.
Collapse
Affiliation(s)
- E V Armbrust
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
19
|
|
20
|
Rosen H, Newman SM, Boynton JE, Gillham NW. A nuclear mutant of Chlamydomonas that exhibits increased sensitivity to UV irradiation, reduced recombination of nuclear genes, and altered transmission of chloroplast genes. Curr Genet 1991; 19:35-4. [PMID: 2036684 DOI: 10.1007/bf00362085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Meiotic progeny of Chlamydomonas reinhardtii normally receive chloroplast genomes only from the mt+ parent. However, exceptional zygotes, which transmit the chloroplast genomes of both parents or, more rarely, only those of the mt- parent, arise at a low frequency. Mutations at the mt(+)-linked mat-3 locus were found previously to elevate the transmission of chloroplast genomes from the mt- parent, resulting in a much higher than normal frequency of exceptional zygotes. In this paper we demonstrate that an ultraviolet-sensitive nuclear mutation mapping at the uvsE1 locus, which is unlinked to mating type, also promotes chloroplast genome transmission from the mt- parent. This mutant, which was previously shown to reduce recombination of nuclear genes in meiosis, acts synergistically with the mat-3-3 mutation to produce an extremely high frequency of exceptional zygotes. Through the use of restriction fragment length polymorphisms existing in the chloroplast genomes of C. reinhardtii and the interfertile strain C. smithii, we show that chloroplast DNA fragments from the mt- parent normally begin to disappear shortly after zygote formation. However, this process appears to be blocked totally in the absence of wild-type uvsE1 and mat-3 gene products. Our findings are consistent with the hypothesis that both gene products contribute to the mechanism responsible for uniparental inheritance of the chloroplast genome from the mt+ parent.
Collapse
Affiliation(s)
- H Rosen
- Department of Biology, California State University, Los Angeles 90032
| | | | | | | |
Collapse
|
21
|
Newman SM, Cattolico RA. Ribulose bisphosphate carboxylase in algae: synthesis, enzymology and evolution. PHOTOSYNTHESIS RESEARCH 1990; 26:69-85. [PMID: 24420459 DOI: 10.1007/bf00047078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/1990] [Accepted: 06/08/1990] [Indexed: 06/03/2023]
Abstract
Studies demonstrating differences in chloroplast structure and biochemistry have been used to formulate hypotheses concerning the origin of algal plastids. Genetic and biochemical experiments indicate that significant variation occurs in ribulose-1,5-bisphosphate carboxylase (Rubisco) when supertaxa of eukaryotic algae are compared. These differences include variations in the organelle location of the genes and their arrangement, mechanism of Rubisco synthesis, polypeptide immunological reactivity and sequence, as well as efficacy of substrate (ribulose bisphosphate and CO2) binding and inhibitor (6-phosphogluconate) action. The structure-function relationships observed among chromophytic, rhodophytic, chlorophytic and prokaryotic Rubisco demonstrate that: (a) similarities among chromophytic and rhodophytic Rubisco exist in substrate/inhibitor binding and polypeptide sequence, (b) characteristic differences in enzyme kinetics and subunit polypeptide structure occur among chlorophytes, prokaryotes and chromophytes/rhodophytes, and (c) there is structural variability among chlorophytic plant small subunit polypeptides, in contrast to the conservation of this polypeptide in chromophytes and rhodophytes. Taxa-specific differences among algal Rubisco enzymes most likely reflect the evolutionary history of the plastid, the functional requirements of each polypeptide, and the consequences of encoding the large and small subunit genes in the same or different organelles.
Collapse
Affiliation(s)
- S M Newman
- Department of Botany, University of Washington, 98195, Seattle, WA, USA
| | | |
Collapse
|
22
|
Munaut C, Dombrowicz D, Matagne RF. Detection of chloroplast DNA by using fluorescent monoclonal anti-bromodeoxyuridine antibody and analysis of its fate during zygote formation in Chlamydomonas reinhardtii. Curr Genet 1990; 18:259-63. [PMID: 2249255 DOI: 10.1007/bf00318390] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A monoclonal anti-bromodeoxyuridine antibody conjugated to fluorescein was used to detect the chloroplast nucleoids after specific incorporation of bromodeoxyuridine (BUdR) into the chloroplast DNA of Chlamydomonas reinhardtii. The incorporation of BUdR was enhanced by simultaneous treatment with fluorodeoxyuridine (FUdR). The method was applied to analyze the fate of chloroplast DNA in zygotes resulting from mating between BUdR-treated gametes (mt+ or mt-) and untreated gametes of opposite mating-type. In crosses between wild-type strains, the nucleoids of mt+ origin remained in the large majority of zygotes whereas those of mt- origin most often disappeared within the first hours following copulation. In crosses of the type mat-3 mt+ x wild-type mt- (the mat-3 mutation permits a high transmission of chloroplast genes from the mt- parent), the nucleoids of mt- origin were generally not eliminated which indicates that the mat-3 mutation prevents the selective destruction of paternal chloroplast DNA in the zygote.
Collapse
Affiliation(s)
- C Munaut
- Department of Botany, University of Liège, Sart Tilman, Belgium
| | | | | |
Collapse
|
23
|
Lee RW, Langille B, Lemieux C, Boer PH. Inheritance of mitochondrial and chloroplast genome markers in backcrosses of Chlamydomonas eugametos x Chlamydomonas moewusii hybrids. Curr Genet 1990. [DOI: 10.1007/bf00313251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Loss of mt +-derived zygotic chloropiast DNA is associated with a lethal allele in Chlamydomonas monoica. Curr Genet 1988. [DOI: 10.1007/bf00424428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Fleming GH, Boynton JE, Gillham NW. The cytoplasmic ribosomes of Chlamydomonas reinhardtii: characterization of antibiotic sensitivity and cycloheximide-resistant mutants. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:419-28. [PMID: 3481023 DOI: 10.1007/bf00327192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro protein synthesis was used to characterize the antibiotic sensitivity of cytoplasmic ribosomes from wild-type and antibiotic-resistant strains of Chlamydomonas reinhardtii. Cytoplasmic ribosomes from two cycloheximide-resistant mutants, act-1 and act-2, were resistant to the antibiotic in vitro. The alteration effected by the act-1 mutation, which was dominant in diploids, was localized to the large subunit of the cytoplasmic ribosomes, but no ribosomal protein alterations were detected using two-dimensional gel electrophoresis. The act-2 mutation, which was semidominant in diploids, was frequently associated with a charge alteration in the large subunit ribosomal protein (r-protein) cyL38 that segregated independently from the antibiotic-resistant phenotype in crosses.
Collapse
Affiliation(s)
- G H Fleming
- Department of Botany, Duke University, Durham, NC 27706
| | | | | |
Collapse
|
26
|
Matagne RF. Chloroplast gene transmission in Chlamydomonas reinhardtii. A model for its control by the mating-type locus. Curr Genet 1987. [DOI: 10.1007/bf00435286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|