1
|
Bizzarri M, Giudici P, Cassanelli S, Solieri L. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast. PLoS One 2016; 11:e0152558. [PMID: 27065237 PMCID: PMC4827841 DOI: 10.1371/journal.pone.0152558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL) loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3) were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid α-specific genes and to activate meiosis in response to stress. We argue that sequence divergence within the chimeric a1-α2 heterodimer could be involved in the generation of negative epistasis, contributing to the allodiploid sterility and the dysregulation of cell identity.
Collapse
Affiliation(s)
- Melissa Bizzarri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy
| |
Collapse
|
2
|
McMahill MS, Sham CW, Bishop DK. Synthesis-dependent strand annealing in meiosis. PLoS Biol 2007; 5:e299. [PMID: 17988174 PMCID: PMC2062477 DOI: 10.1371/journal.pbio.0050299] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 09/20/2007] [Indexed: 11/26/2022] Open
Abstract
Recent studies led to the proposal that meiotic gene conversion can result after transient engagement of the donor chromatid and subsequent DNA synthesis-dependent strand annealing (SDSA). Double Holliday junction (dHJ) intermediates were previously proposed to form both reciprocal crossover recombinants (COs) and noncrossover recombinants (NCOs); however, dHJs are now thought to give rise mainly to COs, with SDSA forming most or all NCOs. To test this model in Saccharomyces cerevisiae, we constructed a random spore system in which it is possible to identify a subset of NCO recombinants that can readily be accounted for by SDSA, but not by dHJ-mediated recombination. The diagnostic class of recombinants is one in which two markers on opposite sides of a double-strand break site are converted, without conversion of an intervening heterologous insertion located on the donor chromatid. This diagnostic class represents 26% of selected NCO recombinants. Tetrad analysis using the same markers provided additional evidence that SDSA is a major pathway for NCO gene conversion in meiosis.
Collapse
Affiliation(s)
- Melissa S McMahill
- Committee on Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Caroline W Sham
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Douglas K Bishop
- Committee on Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Abstract
Exclusive gene expression, where only one member of a gene or gene cassette family is selected for expression, plays an important role in the establishment of cell identity in several biological systems. Here, we compare four such systems: mating-type switching in fission and budding yeast, where cells choose between expressing one of the two different mating-type cassettes, and immunoglobulin and odorant receptor gene expression in mammals, where the number of gene choices is substantially higher. The underlying mechanisms that establish this selective expression pattern in each system differ in almost every detail. In all four systems, once a successful gene activation event has taken place, a feedback mechanism affects the fate of the cell. In the mammalian systems, feedback is mediated by the expressed cell surface receptor to ensure monoallelic gene expression, whereas in the yeasts, the expressed gene cassette at the mating-type locus affects donor choice during the subsequent switching event.
Collapse
|
4
|
Abstract
Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.
Collapse
Affiliation(s)
- J E Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
5
|
Szeto L, Broach JR. Role of alpha2 protein in donor locus selection during mating type interconversion. Mol Cell Biol 1997; 17:751-9. [PMID: 9001229 PMCID: PMC231801 DOI: 10.1128/mcb.17.2.751] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The homeodomain protein alpha2p plays a role both in transcriptional repression in the process of cell type determination and in donor selection during mating interconversion. We have explored the mechanism of alpha2p-directed donor selection by examining the effects on donor preference of mutants deficient in alpha2p-mediated transcriptional repression. As a transcriptional regulator, alpha2p interacts with Mcm1p, Tup1p, and Ssn6p to repress a-specific genes and with a1p, Tup1p, and Ssn6p to repress haploid-specific genes. We have found that mutant alleles of MATalpha2 that specifically diminish the interaction of alpha2p with Mcm1p or Tup1p behave as null alleles with regard to donor preference, while mutations of MATalpha2 that specifically diminish interaction of alpha2p with a1p behave as wild-type MATalpha2 in this capacity. Tup1p plays an essential role in alpha2p-mediated transcriptional repression, while Ssn6p has only a modest effect in repression. In a similar vein, we find that TUP1, but not SSN6, is required for proper donor selection. These results suggest that, in addition to regulating a-specific gene expression to establish the mating type of the cell, alpha2p-Mcm1p-Tup1p complex may indirectly regulate donor preference through transcriptional control of an a-specific gene. Alternatively, this complex may play a direct role in establishing donor preference via its DNA binding and chromatin organization capacity.
Collapse
Affiliation(s)
- L Szeto
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
6
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
7
|
Affiliation(s)
- B J Andrews
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | |
Collapse
|
8
|
Li T, Stark MR, Johnson AD, Wolberger C. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science 1995; 270:262-9. [PMID: 7569974 DOI: 10.1126/science.270.5234.262] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Saccharomyces cerevisiae MATa1 and MAT alpha 2 homeodomain proteins, which play a role in determining yeast cell type, form a heterodimer that binds DNA and represses transcription in a cell type-specific manner. Whereas the alpha 2 and a1 proteins on their own have only modest affinity for DNA, the a1/alpha 2 heterodimer binds DNA with high specificity and affinity. The three-dimensional crystal structure of the a1/alpha 2 homeodomain heterodimer bound to DNA was determined at a resolution of 2.5 A. The a1 and alpha 2 homeodomains bind in a head-to-tail orientation, with heterodimer contacts mediated by a 16-residue tail located carboxyl-terminal to the alpha 2 homeodomain. This tail becomes ordered in the presence of a1, part of it forming a short amphipathic helix that packs against the a1 homeodomain between helices 1 and 2. A pronounced 60 degree bend is induced in the DNA, which makes possible protein-protein and protein-DNA contacts that could not take place in a straight DNA fragment. Complex formation mediated by flexible protein-recognition peptides attached to stably folded DNA binding domains may prove to be a general feature of the architecture of other classes of eukaryotic transcriptional regulators.
Collapse
Affiliation(s)
- T Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | | | |
Collapse
|
9
|
Vershon AK, Jin Y, Johnson AD. A homeo domain protein lacking specific side chains of helix 3 can still bind DNA and direct transcriptional repression. Genes Dev 1995; 9:182-92. [PMID: 7851792 DOI: 10.1101/gad.9.2.182] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A series of mutations in the homeo domain of the yeast alpha 2 protein were constructed to test, both in vivo and in vitro, predictions based on the alpha 2-DNA cocrystal structure described by Wolberger et al. (1991). The effects of the mutations were observed in three different contexts using authentic target DNA sequences: alpha 2 binding alone to specific DNA, alpha 2 binding cooperatively with MCM1 to specific DNA, and alpha 2 binding cooperatively with a1 to specific DNA. As expected, changes in the amino acid residues that contact DNA in the X-ray structure severely compromised the ability of alpha 2 to bind DNA alone and to bind DNA cooperatively with MCM1. In contrast, many of these same mutations, including a triple change that altered all the "recognition" residues of helix 3, had little or no effect on the cooperative binding of alpha 2 and a1 to specific DNA, as determined both in vivo and in vitro. These results show that the ability of a homeo domain protein to correctly select and repress target genes does not necessarily depend on the residues commonly implicated in sequence-specific DNA binding.
Collapse
Affiliation(s)
- A K Vershon
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855
| | | | | |
Collapse
|
10
|
Stark MR, Johnson AD. Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature 1994; 371:429-32. [PMID: 8090224 DOI: 10.1038/371429a0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two yeast homeodomain proteins, a1 and alpha 2, interact and cooperatively bind the haploid-specific gene (hsg) operator, resulting in the repression of a set of genes involved in the determination of cell type. The cooperative binding of a1 and alpha 2 to DNA can be reconstituted in vitro using purified fragments of a1 and alpha 2. Only the homeodomain is needed for a1, but for alpha 2 a C-terminal 22-amino-acid tail is required as well. As most of the specificity of DNA binding appears to derive from a1, we proposed that alpha 2 functions in the a1/alpha 2 heterodimer to contact a1 with its tail. By construction and analysis of several chimaeric proteins, we investigate how two DNA-binding proteins, one with low intrinsic specificity (alpha 2) and one with no apparent intrinsic DNA-binding ability (a1), can together create a highly specific DNA-binding activity. We show that the 22-amino-acid region of alpha 2 immediately C-terminal to the homeodomain, when grafted onto the a1 homeodomain, converts a1 to a strong DNA-binding protein. This alpha 2 tail can also be attached to the Drosophila engrailed homeodomain, and the chimaeric protein now binds cooperatively to DNA with a1, showing how a simple change can create a new homeodomain combination that specifically recognizes a new DNA operator.
Collapse
Affiliation(s)
- M R Stark
- Department of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco 94143-0502
| | | |
Collapse
|
11
|
Phillips CL, Stark MR, Johnson AD, Dahlquist FW. Heterodimerization of the yeast homeodomain transcriptional regulators alpha 2 and a1 induces an interfacial helix in alpha 2. Biochemistry 1994; 33:9294-302. [PMID: 8049230 DOI: 10.1021/bi00197a033] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The homeodomain proteins a1 and alpha 2 act cooperatively to regulate cell type specific genes in yeast. The basis of the cooperativity is a weak interaction between the two proteins which forms heterodimers that bind DNA tightly and specifically. In this paper, we examine the mechanism of heterodimerization. We show that two relatively small fragments of a1 and alpha 2 are capable of heterodimerization and tight DNA binding. The alpha 2 fragment contains the homeodomain followed by the natural 22 C-terminal amino acids of the protein; these 22 amino acids are unstructured in the alpha 2 fragment. The a1 fragment contains only the homeodomain, indicating that the a1 homeodomain mediates both DNA binding and protein-protein interactions with alpha 2. We used isotope-edited NMR spectroscopy to study the interaction in solution of these two fragments. Samples in which only the alpha 2 fragment was uniformly labeled with 15N allowed us to visualize changes in the NMR spectra of the alpha 2 fragment produced by heterodimerization. We found that the a1 homeodomain perturbs the resonances of only the C-terminal tail of alpha 2; moreover, contact with a1 converts a portion of this tail (residues 193-203) from its unstructured state to an alpha-helix, as determined by J coupling and NOE measurements. Thus the heterodimerization of two homeodomain proteins involves the specific interaction between a tail of one protein and the homeodomain of the other. This interaction is accompanied by the acquisition of secondary structure in the tail.
Collapse
Affiliation(s)
- C L Phillips
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | |
Collapse
|
12
|
Mak A, Johnson AD. The carboxy-terminal tail of the homeo domain protein alpha 2 is required for function with a second homeo domain protein. Genes Dev 1993; 7:1862-70. [PMID: 8104845 DOI: 10.1101/gad.7.10.1862] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The homeo domain protein alpha 2 from Saccharomyces cerevisiae has two roles in the a/alpha cell: With MCM1, alpha 2 turns off transcription of a-specific genes; with a1 (a second homeo domain protein), alpha 2 represses transcription of haploid-specific genes. From the carboxy-terminal side of the alpha 2 homeo domain extends an unstructured 22-amino-acid residue tail. In this paper we show that the carboxy-terminal tail of alpha 2 is required for formation of a stable a1/alpha 2-operator complex and is thus required for a1/alpha 2-mediated repression of transcription. In contrast, the tail is dispensable for alpha 2/MCM1-mediated repression. These results indicate that a short, unstructured tail mediates the interaction between two homeo domain proteins.
Collapse
Affiliation(s)
- A Mak
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0502
| | | |
Collapse
|
13
|
Kües U, Casselton LA. Molecular and functional analysis of the A mating type genes of Coprinus cinereus. GENETIC ENGINEERING 1992; 14:251-68. [PMID: 1368279 DOI: 10.1007/978-1-4615-3424-2_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- U Kües
- Department of Plant Sciences, University of Oxford, UK
| | | |
Collapse
|
14
|
Wolberger C, Vershon AK, Liu B, Johnson AD, Pabo CO. Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 1991; 67:517-28. [PMID: 1682054 DOI: 10.1016/0092-8674(91)90526-5] [Citation(s) in RCA: 395] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The MAT alpha 2 homeodomain regulates the expression of cell type-specific genes in yeast. We have determined the 2.7 A resolution crystal structure of the alpha 2 homeodomain bound to a biologically relevant DNA sequence. The DNA in this complex is contacted primarily by the third of three alpha-helices, with additional contacts coming from an N-terminal arm. Comparison of the yeast alpha 2 and the Drosophila engrailed homeodomain-DNA complexes shows that the protein fold is highly conserved, despite a 3-residue insertion in alpha 2 and only 27% sequence identity between the two homeodomains. Moreover, the orientation of the recognition helix on the DNA is also conserved. This docking arrangement is maintained by side chain contacts with the DNA--primarily the sugar-phosphate backbone--that are identical in alpha 2 and engrailed. Since these residues are conserved among all homeodomains, we propose that the contacts with the DNA are also conserved and suggest a general model for homeodomain-DNA interactions.
Collapse
Affiliation(s)
- C Wolberger
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | | | | | | |
Collapse
|
15
|
Phillips CL, Vershon AK, Johnson AD, Dahlquist FW. Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy. Genes Dev 1991; 5:764-72. [PMID: 1673952 DOI: 10.1101/gad.5.5.764] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The yeast alpha 2 protein is a regulator of cell type in Saccharomyces cerevisiae. It represses transcription of a set of target genes by binding to an operator located upstream of each of these genes. The alpha 2 protein shares weak sequence similarity with members of the homeo domain family; the homeo domain is a 60-amino-acid segment found in many eukaryotic transcriptional regulators. In this paper we address the question of whether alpha 2 is structurally related to prototypical members of the homeo domain family. We used solution 1H and 15N nuclear magnetic resonance [NMR] spectroscopy to determine the secondary structure of an 83-amino-acid residue fragment of alpha 2 that contains the homeo domain homology. We have obtained resonance assignments for the backbone protons and nitrogens of the entire 60-residue region of the putative homeo domain and for most of the remainder of the alpha 2 fragment. The secondary structure was determined by using NOE connectivities between backbone protons, 3JHN-H alpha coupling constants, and dynamical information from the hydrogen exchange kinetics of the backbone amides. Three helical segments exist in the alpha 2 fragment consisting of residues 11-23, 32-42, and 46-60 (corresponding to residues 138-150, 159-169, and 173-187 of the intact protein). The positions of these three helices correspond extremely well to those of the Drosophila Antennapedia (Antp) and engrailed (en) homeo domains, whose three-dimensional structures have recently been determined by NMR spectroscopy and X-ray crystallography, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C L Phillips
- Institute of Molecular Biology, University of Oregon, Eugene 98403
| | | | | | | |
Collapse
|
16
|
Lin CI, Livi GP, Ivy JM, Klar AJ. Extragenic suppressors of mar2(sir3) mutations in Saccharomyces cerevisiae. Genetics 1990; 125:321-31. [PMID: 2199314 PMCID: PMC1204022 DOI: 10.1093/genetics/125.2.321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The silent mating-type genes (HML and HMR) of Saccharomyces cerevisiae are kept under negative transcriptional control by four trans-acting MAR (or SIR) loci. We have isolated extragenic suppressors of the mar2-1 mutation which, based on genetic complementation tests, define two additional loci involved in regulating the expression of HML and HMR. A strain with the genotype HMLa MAT alpha HMRa mar2-1 is sterile due to the simultaneous expression of a and alpha information. Two mutants exhibiting an alpha phenotype (which may result from the restoration of MAR/SIR repression) were isolated and genetically characterized. The mutations in these strains: (1) are recessive, (2) are capable of suppressing a mar2-deletion mutation, (3) are unlinked to MAT, (4) complement one another as well as the previously identified sum1-1 mutation, and (5) are not new alleles of the known MAR/SIR loci. We designate these new regulatory loci SUM2 and SUM3 (suppressor of mar). Unlike the sum1-1 mutation, suppression by sum2-1 and sum3-1 is mar2-locus specific. Both sum2-1 and sum3-1 affect the expression of a information at the HM loci. Transcript analysis shows a significant reduction in HMLa and HMRa gene transcription in mar2-1 sum2-1 and mar2-1 sum3-1 cells. Furthermore, we have found genetic evidence to suggest that mar2-1 sum2-1 cells exhibit only partial expression of silent alpha information. We conclude that the SUM2 and SUM3 gene products are required for expression of the HM loci and act downstream of the MAR2 (SIR3) gene function. Possible mechanisms for the action of the SUM gene products are discussed.
Collapse
Affiliation(s)
- C I Lin
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
17
|
Mating-type control in Saccharomyces cerevisiae: isolation and characterization of mutants defective in repression by a1-alpha 2. Mol Cell Biol 1989. [PMID: 2685555 DOI: 10.1128/mcb.9.10.4523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha 2 protein, the product of the MAT alpha 2 cistron, represses various genes specific to the a mating type (alpha 2 repression), and when combined with the MATa1 gene product, it represses MAT alpha 1 and various haploid-specific genes (a1-alpha 2 repression). One target of a1-alpha 2 repression is RME1, which is a negative regulator of a/alpha-specific genes. We have isolated 13 recessive mutants whose a1-alpha 2 repression is defective but which retain alpha 2 repression in a genetic background of ho MATa HML alpha HMRa sir3 or ho MAT alpha HMRa HMRa sir3. These mutations can be divided into three different classes. One class contains a missense mutation, designated hml alpha 2-102, in the alpha 2 cistron of HML, and another class contains two mat alpha 2-202, in the MAT alpha locus. These three mutants each have an amino acid substitution of tyrosine or acid substitution of tyrosine or phenylalanine for cysteine at the 33rd codon from the translation initiation codon in the alpha 2 cistron of HML alpha or MAT alpha. The remaining 10 mutants make up the third class and form a single complementation group, having mutations designated aar1 (a1-alpha 2 repression), at a gene other than MAT, HML, HMR, RME1, or the four SIR genes. Although a diploid cell homozygous for the aarl and sir3 mutations and for the MATa, HML alpha, and HMRa alleles showed alpha mating type, it could sporulate and gave rise to asci containing four alpha mating-type spores. These facts indicate that the domain for alpha2 repression is separable from that for a1-alpha2 protein interaction or complex formation in the alpha2 protein and that an additional regulation gene, AAR1, is associated with the a1-alpha2 repression of the alpha1 cistron and haploid-specific genes.
Collapse
|
18
|
Harashima S, Miller AM, Tanaka K, Kusumoto K, Tanaka K, Mukai Y, Nasmyth K, Oshima Y. Mating-type control in Saccharomyces cerevisiae: isolation and characterization of mutants defective in repression by a1-alpha 2. Mol Cell Biol 1989; 9:4523-30. [PMID: 2685555 PMCID: PMC362537 DOI: 10.1128/mcb.9.10.4523-4530.1989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The alpha 2 protein, the product of the MAT alpha 2 cistron, represses various genes specific to the a mating type (alpha 2 repression), and when combined with the MATa1 gene product, it represses MAT alpha 1 and various haploid-specific genes (a1-alpha 2 repression). One target of a1-alpha 2 repression is RME1, which is a negative regulator of a/alpha-specific genes. We have isolated 13 recessive mutants whose a1-alpha 2 repression is defective but which retain alpha 2 repression in a genetic background of ho MATa HML alpha HMRa sir3 or ho MAT alpha HMRa HMRa sir3. These mutations can be divided into three different classes. One class contains a missense mutation, designated hml alpha 2-102, in the alpha 2 cistron of HML, and another class contains two mat alpha 2-202, in the MAT alpha locus. These three mutants each have an amino acid substitution of tyrosine or acid substitution of tyrosine or phenylalanine for cysteine at the 33rd codon from the translation initiation codon in the alpha 2 cistron of HML alpha or MAT alpha. The remaining 10 mutants make up the third class and form a single complementation group, having mutations designated aar1 (a1-alpha 2 repression), at a gene other than MAT, HML, HMR, RME1, or the four SIR genes. Although a diploid cell homozygous for the aarl and sir3 mutations and for the MATa, HML alpha, and HMRa alleles showed alpha mating type, it could sporulate and gave rise to asci containing four alpha mating-type spores. These facts indicate that the domain for alpha2 repression is separable from that for a1-alpha2 protein interaction or complex formation in the alpha2 protein and that an additional regulation gene, AAR1, is associated with the a1-alpha2 repression of the alpha1 cistron and haploid-specific genes.
Collapse
Affiliation(s)
- S Harashima
- Department of Fermentation Technology, Faculty of Engineering, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|