1
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
2
|
Mishra PK, Wood H, Stanton J, Au WC, Eisenstatt JR, Boeckmann L, Sclafani RA, Weinreich M, Bloom KS, Thorpe PH, Basrai MA. Cdc7-mediated phosphorylation of Cse4 regulates high-fidelity chromosome segregation in budding yeast. Mol Biol Cell 2021; 32:ar15. [PMID: 34432494 PMCID: PMC8693968 DOI: 10.1091/mbc.e21-06-0323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K. Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Henry Wood
- Queen Mary University of London, London E1 4NS, UK
| | - John Stanton
- University of North Carolina, Chapel Hill, NC 27599
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jessica R. Eisenstatt
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Dolson A, Sauty SM, Shaban K, Yankulov K. Dbf4-Dependent Kinase: DDK-ated to post-initiation events in DNA replication. Cell Cycle 2021; 20:2348-2360. [PMID: 34662256 DOI: 10.1080/15384101.2021.1986999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dbf4-Dependent Kinase (DDK) has a well-established essential role at origins of DNA replication, where it phosphorylates and activates the replicative MCM helicase. It also acts in the response to mutagens and in DNA repair as well as in key steps during meiosis. Recent studies have indicated that, in addition to the MCM helicase, DDK phosphorylates several substrates during the elongation stage of DNA replication or upon replication stress. However, these activities of DDK are not essential for viability. Dbf4-Dependent Kinase is also emerging as a key factor in the regulation of genome-wide origin firing and in replication-coupled chromatin assembly. In this review, we summarize recent progress in our understanding of the diverse roles of DDK.
Collapse
Affiliation(s)
- Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:2057-2068. [PMID: 32295767 PMCID: PMC7263675 DOI: 10.1534/g3.120.401131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1 Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7 -7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5 -bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7 -7 strain. We determined that mcm5 -bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7 -7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7 -7 psh1 Δ strain were similar to that of cdc7 -7 and psh1 Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.
Collapse
|
5
|
Localization of Cdc7 Protein Kinase During DNA Replication in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3757-3774. [PMID: 28924058 PMCID: PMC5677158 DOI: 10.1534/g3.117.300223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DDK, a conserved serine-threonine protein kinase composed of a regulatory subunit, Dbf4, and a catalytic subunit, Cdc7, is essential for DNA replication initiation during S phase of the cell cycle through MCM2-7 helicase phosphorylation. The biological significance of DDK is well characterized, but the full mechanism of how DDK associates with substrates remains unclear. Cdc7 is bound to chromatin in the Saccharomyces cerevisiae genome throughout the cell cycle, but there is little empirical evidence as to specific Cdc7 binding locations. Using biochemical and genetic techniques, this study investigated the specific localization of Cdc7 on chromatin. The Calling Cards method, using Ty5 retrotransposons as a marker for DNA–protein binding, suggests Cdc7 kinase is preferentially bound to genomic DNA known to replicate early in S phase, including centromeres and origins of replication. We also discovered Cdc7 binding throughout the genome, which may be necessary to initiate other cellular processes, including meiotic recombination and translesion synthesis. A kinase dead Cdc7 point mutation increases the Ty5 retrotransposon integration efficiency and a 55-amino acid C-terminal truncation of Cdc7, unable to bind Dbf4, reduces Cdc7 binding suggesting a requirement for Dbf4 to stabilize Cdc7 on chromatin during S phase. Chromatin immunoprecipitation demonstrates that Cdc7 binding near specific origins changes during S phase. Our results suggest a model where Cdc7 is loosely bound to chromatin during G1. At the G1/S transition, Cdc7 binding to chromatin is increased and stabilized, preferentially at sites that may become origins, in order to carry out a variety of cellular processes.
Collapse
|
6
|
Brandão LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 2014; 197:1111-22. [PMID: 24875188 PMCID: PMC4125387 DOI: 10.1534/genetics.114.165308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Dbf4-dependent kinase (DDK) (composed of Dbf4 and Cdc7 subunits) is an essential, conserved Ser/Thr protein kinase that regulates multiple processes in the cell, including DNA replication, recombination and induced mutagenesis. Only DDK substrates important for replication and recombination have been identified. Consequently, the mechanism by which DDK regulates mutagenesis is unknown. The yeast mcm5-bob1 mutation that bypasses DDK's essential role in DNA replication was used here to examine whether loss of DDK affects spontaneous as well as induced mutagenesis. Using the sensitive lys2ΔA746 frameshift reversion assay, we show DDK is required to generate "complex" spontaneous mutations, which are a hallmark of the Polζ translesion synthesis DNA polymerase. DDK co-immunoprecipitated with the Rev7 regulatory, but not with the Rev3 polymerase subunit of Polζ. Conversely, Rev7 bound mainly to the Cdc7 kinase subunit and not to Dbf4. The Rev7 subunit of Polζ may be regulated by DDK phosphorylation as immunoprecipitates of yeast Cdc7 and also recombinant Xenopus DDK phosphorylated GST-Rev7 in vitro. In addition to promoting Polζ-dependent mutagenesis, DDK was also important for generating Polζ-independent large deletions that revert the lys2ΔA746 allele. The decrease in large deletions observed in the absence of DDK likely results from an increase in the rate of replication fork restart after an encounter with spontaneous DNA damage. Finally, nonepistatic, additive/synergistic UV sensitivity was observed in cdc7Δ pol32Δ and cdc7Δ pol30-K127R,K164R double mutants, suggesting that DDK may regulate Rev7 protein during postreplication "gap filling" rather than during "polymerase switching" by ubiquitinated and sumoylated modified Pol30 (PCNA) and Pol32.
Collapse
Affiliation(s)
- Luis N Brandão
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Rebecca Ferguson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Irma Santoro
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Sue Jinks-Robertson
- Department of Biology, Emory University, Atlanta, Georgia 30322 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Robert A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
7
|
Zhong Y, Nellimoottil T, Peace JM, Knott SRV, Villwock SK, Yee JM, Jancuska JM, Rege S, Tecklenburg M, Sclafani RA, Tavaré S, Aparicio OM. The level of origin firing inversely affects the rate of replication fork progression. ACTA ACUST UNITED AC 2013; 201:373-83. [PMID: 23629964 PMCID: PMC3639389 DOI: 10.1083/jcb.201208060] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells with reduced origin firing have an increased rate of replication fork progression, whereas fork progression is slowed in cells with excess origins. DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.
Collapse
Affiliation(s)
- Yuan Zhong
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tenca P, Brotherton D, Montagnoli A, Rainoldi S, Albanese C, Santocanale C. Cdc7 is an active kinase in human cancer cells undergoing replication stress. J Biol Chem 2006; 282:208-15. [PMID: 17062569 DOI: 10.1074/jbc.m604457200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cdc7 kinase promotes and regulates DNA replication in eukaryotic organisms. Multiple mechanisms modulating kinase activity in response to DNA replication stress have been reported, supporting the opposing notions that Cdc7 either plays an active role under these conditions or, conversely, is a final target inactivated by a checkpoint response. We have developed new immnunological reagents to study the properties of human Cdc7 kinase in cells challenged with the ribonucleotide reductase inhibitor hydroxyurea or with the DNA topoisomerase II inhibitor etoposide. We show that Cdc7.Dbf4 and Cdc7.Drf1 complexes are stable and active in multiple cell lines upon drug treatment, with Cdc7.Dbf4 accumulating on chromatin-enriched fractions. Cdc7 depletion by small interfering RNA in hydroxyurea and etoposide impairs hyper-phosphorylation of Mcm2 at specific Cdc7-dependent phosphorylation sites and drug-induced hyper-phosphorylation of chromatin-bound Mcm4. Furthermore, sustained inhibition of Cdc7 in the presence of these drugs increases cell death supporting the notion that the Cdc7 kinase plays a role in maintaining cell viability during replication stress.
Collapse
Affiliation(s)
- Pierluigi Tenca
- Department of Cell Biology, Nerviano Medical Sciences-Oncology, Via Pasteur 10, 20014 Nerviano, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Pessoa-Brandão L, Sclafani RA. CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 2005; 167:1597-610. [PMID: 15342501 PMCID: PMC1471023 DOI: 10.1534/genetics.103.021675] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.
Collapse
Affiliation(s)
- Luis Pessoa-Brandão
- Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
10
|
Williams DR, McIntosh JR. Mcl1p is a polymerase alpha replication accessory factor important for S-phase DNA damage survival. EUKARYOTIC CELL 2005; 4:166-77. [PMID: 15643072 PMCID: PMC544150 DOI: 10.1128/ec.4.1.166-177.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 10/26/2004] [Indexed: 01/25/2023]
Abstract
Mcl1p is an essential fission yeast chromatin-binding protein that belongs to a family of highly conserved eukaryotic proteins important for sister chromatid cohesion. The essential function is believed to result from its role as a Pol1p (polymerase alpha) accessory protein, a conclusion based primarily on analogy to Ctf4p's interaction with Pol1p. In this study, we show that Mcl1p also binds to Pol1p with high affinity for the N terminus of Pol1p during S phase and DNA damage. Characterization of an inducible allele of mcl1+, (nmt41)mcl1-MH, shows that altered expression levels of Mcl1p lead to sensitivity to DNA-damaging agents and synthetic lethality with the replication checkpoint mutations rad3Delta, rqh1Delta, and hsk1-1312. Further, we find that the overexpression of the S-phase checkpoint kinase, Cds1, or the loss of Hsk1 kinase activity can disrupt Mcl1p's interaction with chromatin and Pol1p during replication arrest with hydroxyurea. We take these data to mean that Mcl1p is a dynamic component of the polymerase alpha complex during replication and is important for the replication stress response in fission yeast.
Collapse
Affiliation(s)
- Dewight R Williams
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA.
| | | |
Collapse
|
11
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
12
|
Masai H, Arai KI. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 2002; 190:287-96. [PMID: 11857444 DOI: 10.1002/jcp.10070] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication results from the action of a staged set of highly regulated processes. Among the stages of DNA replication, initiation is the key point at which all the G1 regulatory signals culminate. Cdc7 kinase is the critical regulator for the ultimate firing of the origins of initiation. Cdc7, originally identified in budding yeast and later in higher eukaryotes, forms a complex with a Dbf4-related regulatory subunit to generate an active kinase. Genetic evidence in mammals demonstrates essential roles for Cdc7 in mammalian DNA replication. Mini-chromosome maintenance protein (MCM) is the major physiological target of Cdc7. Genetic studies in yeasts indicate additional roles of Cdc7 in meiosis, checkpoint responses, maintenance of chromosome structures, and repair. The interplay between Cdc7 and Cdk, another kinase essential for the S phase, is also discussed.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| | | |
Collapse
|
13
|
Takeda T, Ogino K, Tatebayashi K, Ikeda H, Arai Ki, Masai H. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol Biol Cell 2001; 12:1257-74. [PMID: 11359920 PMCID: PMC34582 DOI: 10.1091/mbc.12.5.1257] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 12/27/2000] [Accepted: 02/20/2001] [Indexed: 01/31/2023] Open
Abstract
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.
Collapse
Affiliation(s)
- T Takeda
- Departments of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Khalfan W, Ivanovska I, Rose MD. Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics 2000; 155:1543-59. [PMID: 10924456 PMCID: PMC1461188 DOI: 10.1093/genetics/155.4.1543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The earliest known step in yeast spindle pole body (SPB) duplication requires Cdc31p and Kar1p, two physically interacting SPB components, and Dsk2p and Rad23p, a pair of ubiquitin-like proteins. Components of the PKC1 pathway were found to interact with these SPB duplication genes in two independent genetic screens. Initially, SLG1 and PKC1 were obtained as high-copy suppressors of dsk2Delta rad23Delta and a mutation in MPK1 was synthetically lethal with kar1-Delta17. Subsequently, we demonstrated extensive genetic interactions between the PKC1 pathway and the SPB duplication mutants that affect Cdc31p function. The genetic interactions are unlikely to be related to the cell-wall integrity function of the PKC1 pathway because the SPB mutants did not exhibit cell-wall defects. Overexpression of multiple PKC1 pathway components suppressed the G2/M arrest of the SPB duplication mutants and mutations in MPK1 exacerbated the cell cycle arrest of kar1-Delta17, suggesting a role for the PKC1 pathway in SPB duplication. We also found that mutations in SPC110, which encodes a major SPB component, showed genetic interactions with both CDC31 and the PKC1 pathway. In support of the model that the PKC1 pathway regulates SPB duplication, one of the phosphorylated forms of Spc110p was absent in pkc1 and mpk1Delta mutants.
Collapse
Affiliation(s)
- W Khalfan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
15
|
Abstract
The MCM proteins are essential replication initiation factors originally identified as proteins required for minichromosome maintenance in Saccharomyces cerevisiae. The best known among them are a family of six structurally related proteins, MCM2-7, which are evolutionally conserved in all eukaryotes. The MCM2-7 proteins form a hexameric complex. This complex is a key component of the prereplication complex that assembles at replication origins during early G1 phase. New evidence suggests that the MCM2-7 proteins may be involved not only in the initiation but also in the elongation of DNA replication. Orchestration of the functional interactions between the MCM2-7 proteins and other components of the prereplication complex by cell cycle-dependent protein kinases results in initiation of DNA synthesis once every cell cycle.
Collapse
Affiliation(s)
- B K Tye
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
16
|
Affiliation(s)
- M E Budd
- Braun Laboratories, 147-75, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
17
|
Johnston LH, Masai H, Sugino A. A Cdc7p-Dbf4p protein kinase activity is conserved from yeast to humans. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:61-9. [PMID: 10740815 DOI: 10.1007/978-1-4615-4253-7_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
DBF4 and CDC7 were identified as budding yeast cell cycle mutants that arrest immediately before S phase. The Dbf4p and Cdc7p proteins interact to form a protein kinase, Cdc7p being the catalytic subunit and Dbf4p is a cyclin-like molecule that activates the kinase in late G1. Dbf4p also targets Cdc7p to origins of replication where likely substrates include the Mcm proteins. Dbf4p and Cdc7p related proteins occur in the fission yeast and in metazoans. These also phosphorylate Mcm proteins and preliminary evidence indicates a similar function to Dbf4p/Cdc7p in budding yeast. The Dbf4p/Cdc7p activity will therefore very likely be conserved in all eukaryotes.
Collapse
Affiliation(s)
- L H Johnston
- Division of Yeast Genetics, National Institute for Medical Research, London, U.K
| | | | | |
Collapse
|
18
|
Abstract
Great insight into the molecular details of cell cycle regulation has been obtained in the past decade. However, most of the progress has been in defining the regulation of the family of cyclin-dependent kinases (CDKs). Recent studies of a myriad of eukaryotic organisms have defined both the regulation and substrates of Cdc7p kinase, which forms a CDK-cyclin-like complex with Dbf4p, is necessary for the initiation of DNA replication and has been conserved in evolution. This kinase is also required for the induction of mutations after DNA damage and for commitment to recombination in the meiotic cell cycle. However, less is known about the role of the kinase in these processes. In a manner similar to CDKs, Cdc7p is activated by a regulatory subunit, Dbf4, the levels of which fluctuate during the cell cycle. One or more subunits of the conserved MCM helicase complex at chromosomal origins of DNA replication are substrates for the kinase during S phase. Phosphorylation of the MCM complex by Cdc7p-Dbf4p might activate DNA replication by unwinding DNA. Therefore, activation of Cdc7p is required for DNA replication. Given that Cdc7p-Dbf4 kinase is overexpressed in many neoplastic cells and tumors, it might be an important early biomarker during cancer progression.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
19
|
Jares P, Blow JJ. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 2000; 14:1528-40. [PMID: 10859170 PMCID: PMC316685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The assembly and disassembly of protein complexes at replication origins play a crucial role in the regulation of chromosomal DNA replication. The sequential binding of the origin recognition complex (ORC), Cdc6, and the minichromosome maintenance (MCM/P1) proteins produces a licensed replication origin. Before the initiation of replication can occur, each licensed origin must be acted upon by S phase-inducing CDKs and the Cdc7 protein kinase. In the present report we describe the role of Xenopus Cdc7 (XCdc7) in DNA replication using cell-free extracts of Xenopus eggs. We show that XCdc7 binds to chromatin during G(1) and S phase. XCdc7 associates with chromatin only once origins have been licensed, but this association does not require the continued presence of XORC or XCdc6 once they have fulfilled their essential role in licensing. Moreover, XCdc7 is required for the subsequent CDK-dependent loading of XCdc45 but is not required for the destabilization of origins that occurs once licensing is complete. Finally, we show that CDK activity is not necessary for XCdc7 to associate with chromatin, induce MCM/P1 phosphorylation, or perform its essential replicative function. From these results we suggest a simple model for the assembly of functional initiation complexes in the Xenopus system.
Collapse
Affiliation(s)
- P Jares
- CRC Chromosome Replication Research Group, Division of Gene Regulation and Expression, Department of Biochemistry, University of Dundee, DD1 5EH Dundee, UK
| | | |
Collapse
|
20
|
Jares P, Blow JJ. Xenopus Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 2000. [DOI: 10.1101/gad.14.12.1528] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The assembly and disassembly of protein complexes at replication origins play a crucial role in the regulation of chromosomal DNA replication. The sequential binding of the origin recognition complex (ORC), Cdc6, and the minichromosome maintenance (MCM/P1) proteins produces a licensed replication origin. Before the initiation of replication can occur, each licensed origin must be acted upon by S phase-inducing CDKs and the Cdc7 protein kinase. In the present report we describe the role of Xenopus Cdc7 (XCdc7) in DNA replication using cell-free extracts of Xenopus eggs. We show that XCdc7 binds to chromatin during G1 and S phase. XCdc7 associates with chromatin only once origins have been licensed, but this association does not require the continued presence of XORC or XCdc6 once they have fulfilled their essential role in licensing. Moreover, XCdc7 is required for the subsequent CDK-dependent loading of XCdc45 but is not required for the destabilization of origins that occurs once licensing is complete. Finally, we show that CDK activity is not necessary for XCdc7 to associate with chromatin, induce MCM/P1 phosphorylation, or perform its essential replicative function. From these results we suggest a simple model for the assembly of functional initiation complexes in the Xenopus system.
Collapse
|
21
|
Nougarède R, Della Seta F, Zarzov P, Schwob E. Hierarchy of S-phase-promoting factors: yeast Dbf4-Cdc7 kinase requires prior S-phase cyclin-dependent kinase activation. Mol Cell Biol 2000; 20:3795-806. [PMID: 10805723 PMCID: PMC85702 DOI: 10.1128/mcb.20.11.3795-3806.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In all eukaryotes, the initiation of DNA synthesis requires the formation of prereplicative complexes (pre-RCs) on replication origins, followed by their activation by two S-T protein kinases, an S-phase cyclin-dependent kinase (S-CDK) and a homologue of yeast Dbf4-Cdc7 kinase (Dbf4p-dependent kinase [DDK]). Here, we show that yeast DDK activity is cell cycle regulated, though less tightly than that of the S-CDK Clb5-Cdk1, and peaks during S phase in correlation with Dbf4p levels. Dbf4p is short-lived throughout the cell cycle, but its instability is accentuated during G(1) by the anaphase-promoting complex. Downregulating DDK activity is physiologically important, as joint Cdc7p and Dbf4p overexpression is lethal. Because pre-RC formation is a highly ordered process, we asked whether S-CDK and DDK need also to function in a specific order for the firing of origins. We found that both kinases are activated independently, but we show that DDK can perform its function for DNA replication only after S-CDKs have been activated. Cdc45p, a protein needed for initiation, binds tightly to chromatin only after S-CDK activation (L. Zou and B. Stillman, Science 280:593-596, 1998). We show that Cdc45p is phosphorylated by DDK in vitro, suggesting that it might be one of DDK's critical substrates after S-CDK activation. Linking the origin-bound DDK to the tightly regulated S-CDK in a dependent sequence of events may ensure that DNA replication initiates only at the right time and place.
Collapse
Affiliation(s)
- R Nougarède
- Institute of Molecular Genetics, CNRS UMR 5535 and Université Montpellier II, F-34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
22
|
Abstract
In budding yeast, Dbf4p and Cdc7p control initiation of DNA synthesis. They form a protein kinase - Cdc7p being the catalytic subunit and Dbf4p a cyclin-like molecule that activates the kinase in late G1 phase. Dbf4p also targets Cdc7p to origins of replication, where probable substrates include certain Mcm proteins. Recent studies have identified Dbf4p- and Cdc7p-related proteins in fission yeast and metazoans. These homologues also phosphorylate Mcm proteins and could have a similar function to that of Dbf4p-Cdc7p in budding yeast. Thus, it seems likely that, like the cyclin-dependent kinases (CDKs), the Dbf4p-Cdc7p activity is conserved in all eukaryotes.
Collapse
Affiliation(s)
- L H Johnston
- Division of Yeast Genetics, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK NW7 1AA.
| | | | | |
Collapse
|
23
|
Shellman YG, Svee E, Sclafani RA, Langan TA. Identification and characterization of individual cyclin-dependent kinase complexes from Saccharomyces cerevisiae. Yeast 1999; 15:295-309. [PMID: 10206189 DOI: 10.1002/(sici)1097-0061(19990315)15:4<295::aid-yea377>3.0.co;2-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In S. cerevisiae, regulation of cell cycle progression is known to be carried out by a single cyclin-dependent kinase homologue, Cdc28p, acting at different stages of the cell cycle in association with various cyclins and other regulatory subunits. However, a still unsolved problem is the identification of the physiologically relevant substrates of the different Cdc28p kinase complexes which participate in this regulation. Purification and characterization of the subunit composition and enzymological properties of these Cdc28p complexes would therefore contribute substantially to our understanding of the molecular mechanisms controlling the cell cycle. We have used a combination of ammonium sulphate fractionation, nickel nitrilotriacetate affinity purification, ATP Sepharose affinity chromatography and Resource Q ion exchange chromatography to purify two different Cdc28p kinase complexes. Using specific clb deletion mutants and plasmid or genomic HA epitope-tagged CLBs, we show that one of these complexes is composed almost exclusively (93% or greater) of Clb2p-Cdc28p, whereas the other is mainly (75% or greater) Clb3p-Cdc28p. These procedures provide the basis for the analysis of regulatory, enzymatic and functional properties of individual Cdc28p kinase complexes.
Collapse
Affiliation(s)
- Y G Shellman
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center, Denver 80262, USA
| | | | | | | |
Collapse
|
24
|
Dohrmann PR, Oshiro G, Tecklenburg M, Sclafani RA. RAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae. Genetics 1999; 151:965-77. [PMID: 10049915 PMCID: PMC1460535 DOI: 10.1093/genetics/151.3.965] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.
Collapse
Affiliation(s)
- P R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
25
|
Hess GF, Drong RF, Weiland KL, Slightom JL, Sclafani RA, Hollingsworth RE. A human homolog of the yeast CDC7 gene is overexpressed in some tumors and transformed cell lines. Gene 1998; 211:133-40. [PMID: 9573348 DOI: 10.1016/s0378-1119(98)00094-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Cdc7 protein kinase of Saccharomyces cerevisiae is a critical regulator of several aspects of DNA metabolism and cell cycle progression. We describe the isolation of a human gene encoding a Cdc7 homolog. The Cdc7Hs protein sequence is 27% identical to that of the yeast protein, includes features unique to yeast Cdc7, and contains all conserved catalytic residues of protein kinases. The human sequence also shows significant similarity to the cyclin-dependent kinases, in accordance with evidence that yeast Cdc7 is related to the cdks. CDC7Hs is expressed in many normal tissues, but overexpressed in certain tumor types and all transformed cell lines examined. In some of the tumors tested, CDC7Hs expression correlates with expression of a proliferation marker, the histone H3 gene. In other cases, no such correlation was observed. This suggests that CDC7Hs expression may be associated hyperproliferation in some tumors and neoplastic transformation in others.
Collapse
Affiliation(s)
- G F Hess
- Cancer Research, Pharmacia, Upjohn, Inc., 301 Henrietta Street, Kalamazoo, MI 49001, USA
| | | | | | | | | | | |
Collapse
|
26
|
Schutz AR, Winey M. New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication. Mol Biol Cell 1998; 9:759-74. [PMID: 9529376 PMCID: PMC25304 DOI: 10.1091/mbc.9.4.759] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1997] [Accepted: 01/28/1998] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1-1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1-1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1-1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1-737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication.
Collapse
Affiliation(s)
- A R Schutz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
27
|
Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 1997; 11:3365-74. [PMID: 9407029 PMCID: PMC316824 DOI: 10.1101/gad.11.24.3365] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 10/09/1997] [Indexed: 02/05/2023]
Abstract
The initiation of DNA synthesis is an important cell cycle event that defines the beginning of S phase. This critical event involves the participation of proteins whose functions are regulated by cyclin dependent protein kinases (Cdks). The Mcm2-7 proteins are a family of six conserved proteins that are essential for the initiation of DNA synthesis in all eukaryotes. In Saccharomyces cerevisiae, members of the Mcm2-7 family undergo cell cycle-specific phosphorylation. Phosphorylation of Mcm proteins at the beginning of S phase coincides with the removal of these proteins from chromatin and the onset of DNA synthesis. In this study, we identified DBF4, which encodes the regulatory subunit of a Cdk-like protein kinase Cdc7-Dbf4, in a screen for second site suppressors of mcm2-1. The dbf4 suppressor mutation restores competence to initiate DNA synthesis to the mcm2-1 mutant. Cdc7-Dbf4 interacts physically with Mcm2 and phosphorylates Mcm2 and three other members of the Mcm2-7 family in vitro. Blocking the kinase activity of Cdc7-Dbf4 at the G1-to-S phase transition also blocks the phosphorylation of Mcm2 at this defined point of the cell cycle. Taken together, our data suggest that phosphorylation of Mcm2 and probably other members of the Mcm2-7 proteins by Cdc7-Dbf4 at the G1-to-S phase transition is a critical step in the initiation of DNA synthesis at replication origins.
Collapse
Affiliation(s)
- M Lei
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- A G Paulovich
- Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
29
|
Evans DR, Rasmussen C, Hanic-Joyce PJ, Johnston GC, Singer RA, Barnes CA. Mutational analysis of the Prt1 protein subunit of yeast translation initiation factor 3. Mol Cell Biol 1995; 15:4525-35. [PMID: 7623843 PMCID: PMC230692 DOI: 10.1128/mcb.15.8.4525] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Saccharomyces cerevisiae PRT1 gene product Prt1p is a component of translation initiation factor eIF-3, and mutations in PRT1 inhibit translation initiation. We have investigated structural and functional aspects of Prt1p and its gene. Transcript analysis and deletion of the PRT1 5' end revealed that translation of PRT1 mRNA is probably initiated at the second in-frame ATG in the open reading frame. The amino acid changes encoded by six independent temperature-sensitive prt1 mutant alleles were found to be distributed throughout the central and C-terminal regions of Prt1p. The temperature sensitivity of each mutant allele was due to a single missense mutation, except for the prt1-2 allele, in which two missense mutations were required. In-frame deletion of an N-terminal region of Prt1p generated a novel, dominant-negative form of Prt1p that inhibits translation initiation even in the presence of wild-type Prt1p. Subcellular fractionation suggested that the dominant-negative Prt1p competes with wild-type Prt1p for association with a component of large Prt1p complexes and as a result inhibits the binding of wild-type Prt1p to the 40S ribosome.
Collapse
Affiliation(s)
- D R Evans
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The Saccharomyces cerevisiae CDC7 gene encodes a protein kinase that functions in three aspects of DNA metabolism: replication, repair, and meiotic recombination. It is likely that these functions overlap and share common elements. The cell cycle dependence of Cdc7 associated DNA repair was examined by UV irradiating a wild type and hypomutable cdc7-7 strain throughout the cell cycle. Both the wild type strain and the cdc7-7 mutant stain delay entry into S phase by 40-60 min when exposed to UV mutagenesis. Cells in G1 are the most sensitive to lethal UV damage while cells in S phase sustain fewer lethal hits. The yield of mutants is greatest for the CDC7 wild type strain when S phase cells are mutagenized. This peak of induced mutagenesis is absent in the cdc7-7 strain. Cdc7 protein may be required for error-prone DNA repair or for translesion error-prone DNA replication and not for the checkpoints in G1 phase. Because Cdc28 protein kinase and Dbf4 protein, a Cdc7 kinase regulator, are also important for induced mutagenesis and the CDC7 promoter is not induced in response to DNA damage, Cdc7 protein kinase may be regulated post-translationally following DNA damage, in the same manner as it is regulated during the cell cycle.
Collapse
Affiliation(s)
- R M Ostroff
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
31
|
Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 1994; 16:253-8. [PMID: 8031302 DOI: 10.1002/bies.950160408] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The RAD6 pathway of budding yeast, Saccharomyces cerevisiae, is responsible for a substantial fraction of this organism's resistance to DNA damage, and also for induced mutagenesis. The pathway appears to incorporate two different recovery processes, both regulated by RAD6. The error-prone recovery process accounts for only a small amount of RAD6-dependent resistance, but probably all induced mutagenesis. The underlying mechanism for error-prone recovery is very likely to be translesion synthesis. The error-free recovery process accounts for most of RAD6-dependent resistance, but its mechanism is less clear; it may entail error-free bypass by template switching and/or DNA gap filling by recombination. RAD6 regulates these activities by ubiquitinating target proteins, but the identities of these target proteins, and the roles they play in error-free and error-prone recovery, have not yet been established.
Collapse
Affiliation(s)
- C Lawrence
- Department of Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642-8408
| |
Collapse
|
32
|
Abstract
The Cdc7 protein kinase is the product of an essential cell cycle gene, and is involved in three aspects of DNA metabolism: mitotic DNA replication, meiotic DNA recombination, and replication-dependent DNA repair. The mechanism by which Cdc7 regulates each of its cellular functions is an issue of considerable interest. Recently, much of the research regarding the regulation of cell cycle progression has focused on the regulatory action of cyclins on their catalytic counterparts. We propose that the function of Cdc7 in cell cycle progression is mediated in a similar manner, in that Dbf4, a protein whose transcript level is known to fluctuate in the cell cycle, is essential for Cdc7 kinase activity. The periodic association of Dbf4 with Cdc7 may account for the regulation of Cdc7 kinase function and progression through the cell cycle.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80206
| | | |
Collapse
|
33
|
Hollingsworth RE, Sclafani RA. Yeast pre-meiotic DNA replication utilizes mitotic origin ARS1 independently of CDC7 function. Chromosoma 1993; 102:415-20. [PMID: 8365350 DOI: 10.1007/bf00360406] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In budding yeast, mitotic DNA replication initiates at sequence-specific replication origins, the prototype for which is ARS1. Initiation serves as the primary control point for mitotic DNA replication, and is catalyzed by the Cdc7 protein kinase. In contrast, premeiotic DNA replication apparently does not require Cdc7, and the existence and nature of specific replication origins in the meiotic division cycle have not been previously reported. We have begun to investigate the mechanism of premeiotic DNA synthesis by determining whether or not ARS1 functions as a DNA replication origin in meiosis. We have taken advantage of the fact that transcription through ARS1 disrupts its ability to function as an origin to show that ARS1 is required for premeiotic DNA replication of a plasmid bearing this element. Further, premeiotic replication from ARS1 still occurs in a cdc7 mutant strain held at conditions non-permissive for Cdc7 protein kinase activity. These findings reveal that premeiotic DNA replication can initiate from origins also used in mitosis, and is not regulated by Cdc7. Taken together with previous findings implicating Cdc7 in meiotic DNA recombination and induced mutagenesis, these findings prompt us to postulate that the Cdc7 protein kinase regulates some step common to several DNA metabolic processes such as local disassembly of chromatin or activation of a key component of the DNA metabolic machinery.
Collapse
Affiliation(s)
- R E Hollingsworth
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
34
|
Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol 1993. [PMID: 8474449 DOI: 10.1128/mcb.13.5.2899] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.
Collapse
|
35
|
Jackson AL, Pahl PM, Harrison K, Rosamond J, Sclafani RA. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol 1993; 13:2899-908. [PMID: 8474449 PMCID: PMC359683 DOI: 10.1128/mcb.13.5.2899-2908.1993] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.
Collapse
Affiliation(s)
- A L Jackson
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
36
|
Yoon HJ, Loo S, Campbell JL. Regulation of Saccharomyces cerevisiae CDC7 function during the cell cycle. Mol Biol Cell 1993; 4:195-208. [PMID: 8382976 PMCID: PMC300915 DOI: 10.1091/mbc.4.2.195] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast Cdc7 function is required for the G1/S transition and is dependent on passage through START, a point controlled by the Cdc28/cdc2/p34 protein kinase. CDC7 encodes a protein kinase activity, and we now show that this kinase activity varies in the cell cycle but that protein levels appear to remain constant. We present several lines of evidence that periodic activation of CDC7 kinase is at least in part through phosphorylation. First, the kinase activity of the Cdc7 protein is destroyed by dephosphorylation of the protein in vitro with phosphatase. Second, Cdc7 protein is hypophosphorylated and inactive as a kinase in extracts of cells arrested at START but becomes active and maximally phosphorylated subsequent to passage through START. The phosphorylation pattern of Cdc7 protein is complex. Phosphopeptide mapping reveals four phosphopeptides in Cdc7 prepared from asynchronous yeast cells. Both autophosphorylation and phosphorylation in trans appear to contribute to this pattern. Autophosphorylation is shown to occur by using a thermolabile Cdc7 protein. A protein in yeast extracts can phosphorylate and activate Cdc7 protein made in Escherichia coli, and phosphorylation is thermolabile in cdc28 mutant extracts. Cdc7 protein carrying a serine to alanine change in the consensus recognition site for Cdc28 kinase shows an altered phosphopeptide map, suggesting that this site is important in determining the overall Cdc7 phosphorylation pattern.
Collapse
Affiliation(s)
- H J Yoon
- Braun Laboratories, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|