1
|
True JD, Muldoon JJ, Carver MN, Poorey K, Shetty SJ, Bekiranov S, Auble DT. The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization. J Biol Chem 2016; 291:15307-19. [PMID: 27226635 DOI: 10.1074/jbc.m116.735134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/06/2022] Open
Abstract
Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation.
Collapse
Affiliation(s)
- Jason D True
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Joseph J Muldoon
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Melissa N Carver
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Kunal Poorey
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Savera J Shetty
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Stefan Bekiranov
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - David T Auble
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
2
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:488-96. [PMID: 21658482 PMCID: PMC3171519 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
3
|
Young ET, Tachibana C, Chang HWE, Dombek KM, Arms EM, Biddick R. Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression. Mol Cell Biol 2008; 28:2509-16. [PMID: 18250152 PMCID: PMC2293114 DOI: 10.1128/mcb.00658-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 10/17/2007] [Accepted: 01/28/2008] [Indexed: 01/16/2023] Open
Abstract
The transcription factor Adr1 activates numerous genes in nonfermentable carbon source metabolism. An unknown mechanism prevents Adr1 from stably binding to the promoters of these genes in glucose-grown cells. Glucose depletion leads to Snf1-dependent binding. Chromatin immunoprecipitation showed that the Adr1 DNA-binding domain could not be detected at the ADH2 promoter under conditions in which the binding of the full-length protein occurred. This suggested that an activation domain is required for stable binding, and coactivators may stabilize the interaction with the promoter. Artificial recruitment of Mediator tail subunits by fusion to the Adr1 DNA-binding domain overcame both the inhibition of promoter binding and glucose repression of ADH2 expression. In contrast, an Adr1 DNA-binding domain-Tbp fusion did not overcome glucose repression, although it was an efficient activator of ADH2 expression under derepressing conditions. When Mediator was artificially recruited, ADH2 expression was independent of SNF1, SAGA, and Swi/Snf, whereas ADH2 expression was dependent on these factors with wild-type Adr1. These results suggest that in the presence of glucose, the ADH2 promoter is accessible to Adr1 but that other interactions that occur when glucose is depleted do not take place. Artificial recruitment of Mediator appears to overcome this requirement and to allow stable binding and transcription under normally inhibitory conditions.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195-7350, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Voronkova V, Kacherovsky N, Tachibana C, Yu D, Young ET. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae. Genetics 2006; 172:2123-38. [PMID: 16415371 PMCID: PMC1456411 DOI: 10.1534/genetics.105.048231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Adr1 directly activates the expression of genes encoding enzymes in numerous pathways that are upregulated after the exhaustion of glucose in the yeast Saccharomyces cerevisiae. ADH2, encoding the alcohol dehydrogenase isozyme required for ethanol oxidation, is a highly glucose-repressed, Adr1-dependent gene. Using a genetic screen we isolated >100 mutants in 12 complementation groups that exhibit ADR1-dependent constitutive ADH2 expression on glucose. Temperature-sensitive alleles are present among the new constitutive mutants, indicating that essential genes play a role in ADH2 repression. Among the genes we cloned is MOT1, encoding a repressor that inhibits TBP binding to the promoter, thus linking glucose repression with TBP access to chromatin. Two genes encoding proteins involved in vacuolar function, FAB1 and VPS35, and CDC10, encoding a nonessential septin, were also uncovered in the search, suggesting that vacuolar function and the cytoskeleton have previously unknown roles in regulating gene expression. Constitutive activation of ADH2 expression by Adr1 is SNF1-dependent in a strain with a defective MOT1 gene, whereas deletion of SNF1 did not affect constitutive ADH2 expression in the mutants affecting vacuolar or septin function. Thus, the mutant search revealed previously unknown Snf1-dependent and -independent pathways of ADH2 expression.
Collapse
Affiliation(s)
- Valentina Voronkova
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
5
|
Darst RP, Dasgupta A, Zhu C, Hsu JY, Vroom A, Muldrow T, Auble DT. Mot1 regulates the DNA binding activity of free TATA-binding protein in an ATP-dependent manner. J Biol Chem 2003; 278:13216-26. [PMID: 12571241 DOI: 10.1074/jbc.m211445200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mot1 is an essential Snf2/Swi2-related Saccharomyces cerevisiae protein that binds the TATA-binding protein (TBP) and removes TBP from DNA using ATP hydrolysis. Mot1 functions in vivo both as a repressor and as an activator of transcription. Mot1 catalysis of TBP.DNA disruption is consistent with its function as a repressor, but the Mot1 mechanism of activation is unknown. To better understand the physiologic role of Mot1 and its enzymatic mechanism, MOT1 mutants were generated and tested for activity in vitro and in vivo. The results demonstrate a close correlation between the TBP.DNA disruption activity of Mot1 and its essential in vivo function. Previous results demonstrated a large overlap in the gene sets controlled by Mot1 and NC2. Mot1 and NC2 can co-occupy TBP.DNA in vitro, and NC2 binding does not impair Mot1-catalyzed disruption of the complex. Residues on the DNA-binding surface of TBP are important for Mot1 binding and the Mot1.TBP binary complex binds very poorly to DNA and does not dissociate in the presence of ATP. However, the binary complex binds DNA well in the presence of the transition state analog ADP-AlF(4). A model for Mot1 action is proposed in which ATP hydrolysis causes the Mot1 N terminus to displace the TATA box, leading to ejection of Mot1 and TBP from DNA.
Collapse
Affiliation(s)
- Russell P Darst
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Young ET, Kacherovsky N, Van Riper K. Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem 2002; 277:38095-103. [PMID: 12167649 DOI: 10.1074/jbc.m206158200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1 controls the expression of genes required for ethanol, glycerol, and fatty acid utilization. We show that Adr1 acts directly on the promoters of ADH2, ACS1, GUT1, CTA1, and POT1 using chromatin immunoprecipitation assays. The yeast homolog of the AMP-activated protein kinase, Snf1, promotes Adr1 chromatin binding in the absence of glucose, and the protein phosphatase complex, Glc7.Reg1, represses its binding in the presence of glucose. A post-translational process is implicated in the regulation of Adr1 binding activity. Chromatin binding by Adr1 is not the only step in ADH2 transcription that is regulated by glucose repression. Adr1 can bind to chromatin in repressed conditions in the presence of hyperacetylated histones. To study steps subsequent to promoter binding we utilized miniAdr1 transcription factors to characterize Adr1-dependent transcription in vitro. Yeast nuclear extracts prepared from glucose-repressed and glucose-derepressed cells are equally capable of supporting miniAdr1-dependent transcription and pre-initiation complex formation. Nuclear extracts prepared from a snf1 mutant support miniAdr1-dependent transcription but are partially defective in the formation of pre-initiation complexes with Mediator components being particularly depleted. We conclude that Snf1 regulates Adr1-dependent transcription primarily at the level of chromatin binding.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | |
Collapse
|
7
|
Affiliation(s)
- J R Bone
- Department of Biochemistry and Molecular Biology, Box 117, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
8
|
Sloan JS, Dombek KM, Young ET. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J Biol Chem 1999; 274:37575-82. [PMID: 10608811 DOI: 10.1074/jbc.274.53.37575] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADR1 encodes a transcriptional activator that regulates genes involved in carbon source utilization in Saccharomyces cerevisiae. ADR1 is itself repressed by glucose, but the significance of this repression for regulating target genes is not known. To test if the reduction in Adr1 levels contributes to glucose repression of ADH2 expression, we generated yeast strains in which the level of Adr1 produced during growth in glucose-containing medium is similar to that present in wild-type cells grown in the absence of glucose. In these Adr1-overproducing strains, ADH2 expression remained tightly repressed, and UAS1, the element in the ADH2 promoter that binds Adr1, was sufficient to maintain glucose repression. Post-translational modification of Adr1 activity is implicated in repression, since ADH2 derepression occurred in the absence of de novo protein synthesis. The N-terminal 172 amino acids of Adr1, containing the DNA binding and nuclear localization domains, fused to the Herpesvirus VP16-encoded transcription activation domain, conferred regulated expression at UAS1. Nuclear localization of an Adr1-GFP fusion protein was not glucose-regulated, suggesting that the DNA binding domain of Adr1 is sufficient to confer regulated expression on target genes. A Gal4-Adr1 fusion protein was unable to confer glucose repression at GAL4-dependent promoters, suggesting that regulation mediated by ADR1 is specific to UAS1.
Collapse
Affiliation(s)
- J S Sloan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
9
|
Muldrow TA, Campbell AM, Weil PA, Auble DT. MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Mol Cell Biol 1999; 19:2835-45. [PMID: 10082549 PMCID: PMC84076 DOI: 10.1128/mcb.19.4.2835] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MOT1 is an ATPase which can dissociate TATA binding protein (TBP)-DNA complexes in a reaction requiring ATP hydrolysis. Consistent with this observation, MOT1 can repress basal transcription in vitro. Paradoxically, however, some genes, such as HIS4, appear to require MOT1 as an activator of transcription in vivo. To further investigate the function of MOT1 in basal transcription, we performed in vitro transcription reactions using yeast nuclear extracts depleted of MOT1. Quantitation of MOT1 revealed that it is an abundant protein, with nuclear extracts from wild-type cells containing a molar excess of MOT1 over TBP. Surprisingly, MOT1 can weakly activate basal transcription in vitro. This activation by MOT1 is detectable with amounts of MOT1 that are approximately stoichiometric to TBP. With amounts of MOT1 similar to those present in wild-type nuclear extracts, MOT1 behaves as a weak repressor of basal transcription. These results suggest that MOT1 might activate transcription via an indirect mechanism in which limiting TBP can be liberated from nonpromoter sites for use at promoters. In support of this idea, excess nonpromoter DNA sequesters TBP and represses transcription, but this effect can be reversed by addition of MOT1. These results help to reconcile previous in vitro and in vivo results and expand the repertoire of transcriptional control strategies to include factor-assisted redistribution of TBP between promoter and nonpromoter sites.
Collapse
Affiliation(s)
- T A Muldrow
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Science Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
10
|
Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 1998; 273:32080-7. [PMID: 9822683 DOI: 10.1074/jbc.273.48.32080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1p controls expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), genes involved in glycerol metabolism, and genes required for peroxisome biogenesis and function. Previous data suggested that promoter-specific activation domains might contribute to expression of the different types of ADR1-dependent genes. By using gene fusions encoding the Gal4p DNA binding domain and portions of Adr1p, we identified a single, strong acidic activation domain spanning amino acids 420-462 of Adr1p. Both acidic and hydrophobic amino acids within this activation domain were important for its function. The critical hydrophobic residues are in a motif previously identified in p53 and related acidic activators. A mini-Adr1 protein consisting of the DNA binding domain of Adr1p fused to this 42-residue activation domain carried out all of the known functions of wild-type ADR1. It conferred stringent glucose repression on the ADH2 locus and on UAS1-containing reporter genes. The putative inhibitory region of Adr1p encompassing the protein kinase A phosphorylation site at Ser-230 is thus not essential for glucose repression mediated by ADR1. Mini-ADR1 allowed efficient derepression of gene expression. In addition it complemented an ADR1-null allele for growth on glycerol and oleate media, indicating efficient activation of genes required for glycerol metabolism and peroxisome biogenesis. Thus, a single activation domain can activate all ADR1-dependent promoters.
Collapse
Affiliation(s)
- E T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Chicca JJ, Auble DT, Pugh BF. Cloning and biochemical characterization of TAF-172, a human homolog of yeast Mot1. Mol Cell Biol 1998; 18:1701-10. [PMID: 9488487 PMCID: PMC108885 DOI: 10.1128/mcb.18.3.1701] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1997] [Accepted: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
The TATA binding protein (TBP) is a central component of the eukaryotic transcriptional machinery and is the target of positive and negative transcriptional regulators. Here we describe the cloning and biochemical characterization of an abundant human TBP-associated factor (TAF-172) which is homologous to the yeast Mot1 protein and a member of the larger Snf2/Swi2 family of DNA-targeted ATPases. Like Mot1, TAF-172 binds to the conserved core of TBP and uses the energy of ATP hydrolysis to dissociate TBP from DNA (ADI activity). Interestingly, ATP also causes TAF-172 to dissociate from TBP, which has not been previously observed with Mot1. Unlike Mot1, TAF-172 requires both TBP and DNA for maximal (approximately 100-fold) ATPase activation. TAF-172 inhibits TBP-driven RNA polymerase II and III transcription but does not appear to affect transcription driven by TBP-TAF complexes. As it does with Mot1, TFIIA reverses TAF-172-mediated repression of TBP. Together, these findings suggest that human TAF-172 is the functional homolog of yeast Mot1 and uses the energy of ATP hydrolysis to remove TBP (but apparently not TBP-TAF complexes) from DNA.
Collapse
Affiliation(s)
- J J Chicca
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
12
|
Auble DT, Wang D, Post KW, Hahn S. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol Cell Biol 1997; 17:4842-51. [PMID: 9234740 PMCID: PMC232336 DOI: 10.1128/mcb.17.8.4842] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MOT1 is an essential Saccharomyces cerevisiae protein and a member of the SNF2/SWI2 family of ATPases. MOT1 functions by removing TATA-binding protein (TBP) from DNA, and as a consequence, MOT1 can regulate transcription both in vitro and in vivo. Here we describe the in vivo and in vitro activities of MOT1 deletion and substitution mutants. The results indicate that MOT1 is targeted to TBP both in vitro and in vivo via amino acids in its nonconserved N terminus. The conserved C-terminal ATPase of MOT1 appears to contribute to TBP-DNA complex recognition in the absence of ATP, but it appears to function primarily during the actual ATP-dependent dissociation reaction. Chimeric proteins in which homologous portions of SNF2/SWI2 have been substituted for the MOT1 ATPase can bind to TBP-DNA complexes but fail to dissociate these complexes in the presence of ATP, suggesting that the specificity of action of MOT1 is also conferred by the C-terminal ATPase. ATPase assays demonstrate that the MOT1 ATPase is activated by TBP. Thus, MOT1 undergoes at least two conformational changes: (i) an allosteric effect of TBP that mediates the activation of the MOT1 ATPase and (ii) an ATP-driven "power stroke" that causes TBP-DNA complex dissociation. These results provide a general framework for understanding how members of the SNF2/SWI2 protein family use ATP to modulate protein-DNA interactions to regulate many diverse processes in cells.
Collapse
Affiliation(s)
- D T Auble
- Department of Biochemistry, University of Virginia Health Science Center, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
13
|
Donoviel MS, Young ET. Isolation and identification of genes activating UAS2-dependent ADH2 expression in Saccharomyces cerevisiae. Genetics 1996; 143:1137-48. [PMID: 8807288 PMCID: PMC1207385 DOI: 10.1093/genetics/143.3.1137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two cis-acting elements have been identified that act synergistically to regulate expression of the glucose-repressed alcohol dehydrogenase 2 (ADH2) gene. UAS1 is bound by the trans-activator Adr1p. UAS2 is thought to be the binding site for an unidentified regulatory protein. A genetic selection based on a UAS2-dependent ADH2 reporter was devised to isolate genes capable of activating UAS2-dependent transcription. One set of UAS2-dependent genes contained SPT6/CRE2/SSN20. Multicopy SPT6 caused improper expression of chromosomal ADH2. A second set of UAS2-dependent clones contained a previously uncharacterized open reading frame designated MEU1 (Multicopy Enhancer of UAS2). A frame shift mutation in MEU1 abolished its ability to activate UAS2-dependent gene expression. Multicopy MEU1 expression suppressed the constitutive ADH2 expression caused by cre2-1. Disruption of MEU1 reduced endogenous ADH2 expression about twofold but had no effect on cell viability or growth. No homologues of MEU1 were identified by low-stringency Southern hybridization of yeast genomic DNA, and no significant homologues were found in the sequence data bases. A MEU1/beta-gal fusion protein was not localized to a particular region of the cell. MEU1 is linked to PPR1 on chromosome XII.
Collapse
Affiliation(s)
- M S Donoviel
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
14
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
15
|
De Bolle X, Vinals C, Prozzi D, Paquet JY, Leplae R, Depiereux E, Vandenhaute J, Feytmans E. Identification of residues potentially involved in the interactions between subunits in yeast alcohol dehydrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:214-9. [PMID: 7628473 DOI: 10.1111/j.1432-1033.1995.tb20689.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The lack of crystal structure for tetrameric yeast alcohol dehydrogenases (ADHs) has precluded, until now, the identification of the residues involved in subunit contacts. In order to address this question, we have characterized the thermal stability and dissociation propensity of native ADH I and ADH II isozymes as well as of several chimeric (ADH I-ADH II) enzymes. Three groups of substitutions affecting the thermostability have been identified among the 24 substitutions observed between isozymes I and II. The first group contains a Cys277-->Ser substitution, located at the interface between subunits in a three-dimensional model of ADH I, based on the crystallographic structure of the dimeric horse liver ADH. In the second group, the Asp236-->Asn substitution is located in the same interaction zone on the model. The stabilizing effect of this substitution can result from the removal of a charge repulsion between subunits. It is shown that the effect of these two groups of substitutions correlates with changes in dissociation propensities. The third group contains the Met168-->Arg substitution that increases the thermal stability, probably by the formation of an additional salt bridge between subunits through the putative interface. These data suggest that at least part of the subunit contacts observed in horse liver ADH are located at homologous positions in yeast ADHs.
Collapse
Affiliation(s)
- X De Bolle
- Département de Biologie, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Donoviel MS, Kacherovsky N, Young ET. Synergistic activation of ADH2 expression is sensitive to upstream activation sequence 2 (UAS2) orientation, copy number and UAS1-UAS2 helical phasing. Mol Cell Biol 1995; 15:3442-9. [PMID: 7760841 PMCID: PMC230579 DOI: 10.1128/mcb.15.6.3442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The alcohol dehydrogenase 2 (ADH2) gene of Saccharomyces cerevisiae is under stringent glucose repression. Two cis-acting upstream activation sequences (UAS) that function synergistically in the derepression of ADH2 gene expression have been identified. UAS1 is the binding site for the transcriptional regulator Adr1p. UAS2 has been shown to be important for ADH2 expression and confers glucose-regulated, ADR1-independent activity to a heterologous reporter gene. An analysis of point mutations within UAS2, in the context of the entire ADH2 upstream regulatory region, showed that the specific sequence of UAS2 is important for efficient derepression of ADH2, as would be expected if UAS2 were the binding site for a transcriptional regulatory protein. In the context of the ADH2 upstream regulatory region, including UAS1, working in concert with the ADH2 basal promoter elements, UAS2-dependent gene activation was dependent on orientation, copy number, and helix phase. Multimerization of UAS2, or its presence in reversed orientation, resulted in a decrease in ADH2 expression. In contrast, UAS2-dependent expression of a reporter gene containing the ADH2 basal promoter and coding sequence was enhanced by multimerization of UAS2 and was independent of UAS2 orientation. The reduced expression caused by multimerization of UAS2 in the native promoter was observed only in the presence of ADR1. Inhibition of UAS2-dependent gene expression by Adr1p was also observed with a UAS2-dependent ADH2 reporter gene. This inhibition increased with ADR1 copy number and required the DNA-binding activity of Adr1p. Specific but low-affinity binding of Adr1p to UAS2 in vitro was demonstrated, suggesting that the inhibition of UAS2-dependent gene expression observed in vivo could be a direct effect due to Adr1p binding to UAS2.
Collapse
Affiliation(s)
- M S Donoviel
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
17
|
DNA topoisomerase I controls the kinetics of promoter activation and DNA topology in Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8413266 DOI: 10.1128/mcb.13.11.6702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the nonessential TOP1 gene, which codes for Saccharomyces cerevisiae DNA topoisomerase I, affects the rate of transcription starting at the ADH2 promoter. For both the chromosomal gene and the plasmid-borne promoter, mRNA accumulation is kinetically favored in the mutant relative to a wild-type isogenic strain. The addition of ethanol causes in wild-type yeast strains a substantial increase in linking number both on the ADH2-containing plasmid and on the resident 2 microns DNA. Evidence has been obtained that such an in vivo increase in linking number depends on (i) the activity of DNA topoisomerase I and of no other enzyme and (ii) ethanol addition, not on the release from glucose repression. A direct cause-effect relationship between the change in supercoiling and alteration of transcription cannot be defined. However, the hypothesis that a metabolism-induced modification of DNA topology in a eukaryotic cell plays a role in regulating gene expression is discussed.
Collapse
|
18
|
Di Mauro E, Camilloni G, Verdone L, Caserta M. DNA topoisomerase I controls the kinetics of promoter activation and DNA topology in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:6702-10. [PMID: 8413266 PMCID: PMC364733 DOI: 10.1128/mcb.13.11.6702-6710.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Inactivation of the nonessential TOP1 gene, which codes for Saccharomyces cerevisiae DNA topoisomerase I, affects the rate of transcription starting at the ADH2 promoter. For both the chromosomal gene and the plasmid-borne promoter, mRNA accumulation is kinetically favored in the mutant relative to a wild-type isogenic strain. The addition of ethanol causes in wild-type yeast strains a substantial increase in linking number both on the ADH2-containing plasmid and on the resident 2 microns DNA. Evidence has been obtained that such an in vivo increase in linking number depends on (i) the activity of DNA topoisomerase I and of no other enzyme and (ii) ethanol addition, not on the release from glucose repression. A direct cause-effect relationship between the change in supercoiling and alteration of transcription cannot be defined. However, the hypothesis that a metabolism-induced modification of DNA topology in a eukaryotic cell plays a role in regulating gene expression is discussed.
Collapse
MESH Headings
- Alcohol Dehydrogenase/biosynthesis
- Alcohol Dehydrogenase/genetics
- Base Sequence
- DNA Primers
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Circular/chemistry
- DNA, Circular/isolation & purification
- DNA, Circular/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/isolation & purification
- DNA, Fungal/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Kinetics
- Molecular Sequence Data
- Plasmids
- Promoter Regions, Genetic
- Restriction Mapping
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- E Di Mauro
- Centro Acidi Nucleici, Consiglio Nazionale delle Ricerhe, Rome, Italy
| | | | | | | |
Collapse
|