1
|
Svetec Miklenić M, Gatalica N, Matanović A, Žunar B, Štafa A, Lisnić B, Svetec IK. Size-dependent antirecombinogenic effect of short spacers on palindrome recombinogenicity. DNA Repair (Amst) 2020; 90:102848. [PMID: 32388488 DOI: 10.1016/j.dnarep.2020.102848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/01/2023]
Abstract
Palindromic sequences in DNA can instigate genetic recombination and genome instability, which can result in devastating conditions such as the Emmanuel syndrome. Palindrome recombinogenicity increases with its size and sequence similarity between palindrome arms, while quasipalindromes with long spacers are less recombinogenic. However, the minimal spacer length, which could reduce or abolish palindrome recombinogenicity in the eukaryotic genome, was never determined. Therefore, we constructed a series of palindromes containing spacers of lengths ranging from 0 (perfect palindrome) to 10 bp and tested their recombinogenicity in yeast Saccharomyces cerevisiae. We found that a 7 bp spacer significantly reduces 126 bp palindrome recombinogenicity, while a 10 bp spacer completely stabilizes palindromes up to 150 bp long. Additionally, we showed that palindrome stimulated recombination rate is not dependent on Mus81 and Yen1 endonucleases. We also compared the recombinogenicity of a perfect 126 bp palindrome and a corresponding quasipalindrome consisting of the same palindrome arms with a stabilising 10 bp spacer in sgs1Δ and rad27Δ backgrounds, since both Sgs1 helicase and Rad27 endonuclease are implicated in preventing hairpin formation at palindromic sequences during replication.
Collapse
Affiliation(s)
- Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nikolina Gatalica
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Angela Matanović
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nat Genet 2014; 46:1293-302. [PMID: 25326701 PMCID: PMC4244265 DOI: 10.1038/ng.3120] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
Abstract
Recurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, autism and epilepsy. To gain insight into its instability, we sequenced the region in patients, normal individuals and nonhuman primates. We discovered five structural configurations of the human chromosome 15q13.3 region ranging in size from 2 to 3 Mbp. These configurations arose recently (~0.5–0.9 million years ago) as a result of human-specific expansions of segmental duplications and two independent inversion events. All inversion breakpoints map near GOLGA8 core duplicons—a ~14 kbp primate-specific chromosome 15 repeat that became organized into larger palindromic structures. GOLGA8-flanked palindromes also demarcate the breakpoints of recurrent 15q13.3 microdeletions, the expansion of chromosome 15 segmental duplications in the human lineage, and independent structural changes in apes. The significant clustering (p=0.002) of breakpoints provides mechanistic evidence for the role of this core duplicon and its palindromic architecture in promoting evolutionary and disease-related instability of chromosome 15.
Collapse
|
3
|
Zhang Y, Saini N, Sheng Z, Lobachev KS. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination. PLoS Genet 2013; 9:e1003979. [PMID: 24339793 PMCID: PMC3855049 DOI: 10.1371/journal.pgen.1003979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/12/2013] [Indexed: 02/07/2023] Open
Abstract
Inverted repeats capable of forming hairpin and cruciform structures present a threat to chromosomal integrity. They induce double strand breaks, which lead to gross chromosomal rearrangements, the hallmarks of cancers and hereditary diseases. Secondary structure formation at this motif has been proposed to be the driving force for the instability, albeit the mechanisms leading to the fragility are not well-understood. We carried out a genome-wide screen to uncover the genetic players that govern fragility of homologous and homeologous Alu quasi-palindromes in the yeast Saccharomyces cerevisiae. We found that depletion or lack of components of the DNA replication machinery, proteins involved in Fe-S cluster biogenesis, the replication-pausing checkpoint pathway, the telomere maintenance complex or the Sgs1-Top3-Rmi1 dissolvasome augment fragility at Alu-IRs. Rad51, a component of the homologous recombination pathway, was found to be required for replication arrest and breakage at the repeats specifically in replication-deficient strains. These data demonstrate that Rad51 is required for the formation of breakage-prone secondary structures in situations when replication is compromised while another mechanism operates in DSB formation in replication-proficient strains. Inverted repeats are found in many eukaryotic genomes including humans. They have a potential to cause chromosomal breakage and rearrangements that contribute to genome polymorphism and the development of diseases. Instability of inverted repeats is accounted for by their propensity to adopt DNA secondary structures that is negatively affected by the distance between the repeats and level of sequence divergence. However, the genetic factors that promote the abnormal structure formation or affect the ability of the repeats to break are largely unknown. Here, using a genome-wide screen we identified 38 mutants that destabilize imperfect human inverted Alu repeats and predispose them to breakage. The proteins that are required to maintain repeat stability belong to the core of the DNA replication machinery and to the accessory proteins that help replication fork to move through the difficult templates. Remarkably, when replication machinery is compromised, the proteins involved in homologous recombination promote the formation of secondary structures and replication block thereby triggering breakage at the inverted repeats. These results reveal a powerful pathway for the destabilization of chromosomes containing inverted repeats that requires the activity of homologous recombination.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Liddell LC, Manthey GM, Owens SN, Fu BXH, Bailis AM. Alleles of the homologous recombination gene, RAD59, identify multiple responses to disrupted DNA replication in Saccharomyces cerevisiae. BMC Microbiol 2013; 13:229. [PMID: 24125552 PMCID: PMC3852934 DOI: 10.1186/1471-2180-13-229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/04/2013] [Indexed: 11/26/2022] Open
Abstract
Background In Saccharomyces cerevisiae, Rad59 is required for multiple homologous recombination mechanisms and viability in DNA replication-defective rad27 mutant cells. Recently, four rad59 missense alleles were found to have distinct effects on homologous recombination that are consistent with separation-of-function mutations. The rad59-K166A allele alters an amino acid in a conserved α-helical domain, and, like the rad59 null allele diminishes association of Rad52 with double-strand breaks. The rad59-K174A and rad59-F180A alleles alter amino acids in the same domain and have genetically similar effects on homologous recombination. The rad59-Y92A allele alters a conserved amino acid in a separate domain, has genetically distinct effects on homologous recombination, and does not diminish association of Rad52 with double-strand breaks. Results In this study, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2. Unlike rad27, the stimulatory effect of rad59-Y92A on homologous recombination was not accompanied by effects on growth rate, cell cycle distribution, mutation, unequal sister-chromatid recombination, or loss of heterozygosity. Conclusions The synthetic lethality conferred by rad59 null and rad59-K166A alleles correlates with their inhibitory effect on association of Rad52 with double-strand breaks, suggesting that this may be essential for rescuing replication lesions in rad27 mutant cells. The rad59-K174A and rad59-F180A alleles may fractionally reduce this same function, which proportionally reduced repair of replication lesions by homologous recombination and growth rate. In contrast, rad59-Y92A stimulates homologous recombination, perhaps by affecting association of replication lesions with the Rad51 recombinase. This suggests that Rad59 influences the rescue of replication lesions by multiple recombination factors.
Collapse
Affiliation(s)
- Lauren C Liddell
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 91010 Duarte, CA, USA.
| | | | | | | | | |
Collapse
|
5
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
6
|
Kurahashi H, Inagaki H, Kato T, Hosoba E, Kogo H, Ohye T, Tsutsumi M, Bolor H, Tong M, Emanuel BS. Impaired DNA replication prompts deletions within palindromic sequences, but does not induce translocations in human cells. Hum Mol Genet 2009; 18:3397-406. [PMID: 19520744 PMCID: PMC2729664 DOI: 10.1093/hmg/ddp279] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/09/2009] [Indexed: 11/12/2022] Open
Abstract
Palindromic regions are unstable and susceptible to deletion in prokaryotes and eukaryotes possibly due to stalled or slow replication. In the human genome, they also appear to become partially or completely deleted, while two palindromic AT-rich repeats (PATRR) contribute to known recurrent constitutional translocations. To explore the mechanism that causes the development of palindrome instabilities in humans, we compared the incidence of de novo translocations and deletions at PATRRs in human cells. Using a highly sensitive PCR assay that can detect single molecules, de novo deletions were detected neither in human somatic cells nor in sperm. However, deletions were detected at low frequency in cultured cell lines. Inhibition of DNA replication by administration of siRNA against the DNA polymerase alpha 1 (POLA1) gene or introduction of POLA inhibitors increased the frequency. This is in contrast to PATRR-mediated translocations that were never detected in similar conditions but were observed frequently in human sperm samples. Further deletions were found to take place during both leading- and lagging-strand synthesis. Our data suggest that stalled or slow replication induces deletions within PATRRs, but that other mechanisms might contribute to PATRR-mediated recurrent translocations in humans.
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p. Genetics 2009; 183:423-39, 1SI-26SI. [PMID: 19635935 DOI: 10.1534/genetics.109.106385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic instability at palindromes and spaced inverted repeats (IRs) leads to chromosome rearrangements. Perfect palindromes and IRs with short spacers can extrude as cruciforms or fold into hairpins on the lagging strand during replication. Cruciform resolution produces double-strand breaks (DSBs) with hairpin-capped ends, and Mre11p and Sae2p are required to cleave the hairpin tips to facilitate homologous recombination. Fragile site 2 (FS2) is a naturally occurring IR in Saccharomyces cerevisiae composed of a pair of Ty1 elements separated by approximately 280 bp. Our results suggest that FS2 forms a hairpin, rather than a cruciform, during replication in cells with low levels of DNA polymerase. Cleavage of this hairpin results in a recombinogenic DSB. We show that DSB formation at FS2 does not require Mre11p, Sae2p, Rad1p, Slx4p, Pso2p, Exo1p, Mus81p, Yen1p, or Rad27p. Also, repair of DSBs by homologous recombination is efficient in mre11 and sae2 mutants. Homologous recombination is impaired at FS2 in rad52 mutants and most aberrations reflect either joining of two broken chromosomes in a "half crossover" or telomere capping of the break. In support of hairpin formation precipitating DSBs at FS2, two telomere-capped deletions had a breakpoint near the center of the IR. In summary, Mre11p and Sae2p are not required for DSB formation at FS2 or the subsequent repair of these DSBs.
Collapse
|
8
|
Mutagenic and recombinagenic responses to defective DNA polymerase delta are facilitated by the Rev1 protein in pol3-t mutants of Saccharomyces cerevisiae. Genetics 2008; 179:1795-806. [PMID: 18711219 DOI: 10.1534/genetics.108.089821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defective DNA replication can result in substantial increases in the level of genome instability. In the yeast Saccharomyces cerevisiae, the pol3-t allele confers a defect in the catalytic subunit of replicative DNA polymerase delta that results in increased rates of mutagenesis, recombination, and chromosome loss, perhaps by increasing the rate of replicative polymerase failure. The translesion polymerases Pol eta, Pol zeta, and Rev1 are part of a suite of factors in yeast that can act at sites of replicative polymerase failure. While mutants defective in the translesion polymerases alone displayed few defects, loss of Rev1 was found to suppress the increased rates of spontaneous mutation, recombination, and chromosome loss observed in pol3-t mutants. These results suggest that Rev1 may be involved in facilitating mutagenic and recombinagenic responses to the failure of Pol delta. Genome stability, therefore, may reflect a dynamic relationship between primary and auxiliary DNA polymerases.
Collapse
|
9
|
Inagaki H, Ohye T, Kogo H, Kato T, Bolor H, Taniguchi M, Shaikh TH, Emanuel BS, Kurahashi H. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 2008; 19:191-8. [PMID: 18997000 DOI: 10.1101/gr.079244.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arlt MF, Durkin SG, Ragland RL, Glover TW. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 2006; 5:1126-35. [PMID: 16807141 DOI: 10.1016/j.dnarep.2006.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human, Genetics University of Michigan, 4909 Buhl Box 0618, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
12
|
Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD. Chromosomal Translocations in Yeast Induced by Low Levels of DNA Polymerase. Cell 2005; 120:587-98. [PMID: 15766523 DOI: 10.1016/j.cell.2004.12.039] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/11/2004] [Accepted: 12/22/2004] [Indexed: 11/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae, reduced levels of the replicative alpha DNA polymerase result in greatly elevated frequencies of chromosome translocations and chromosome loss. We selected translocations in a small region of chromosome III and found that they involve homologous recombination events between yeast retrotransposons (Ty elements) on chromosome III and retrotransposons located on other chromosomes. One of the two preferred sites of these translocations on chromosome III involve two Ty elements arrayed head-to-head; disruption of this site substantially reduces the rate of translocations. We demonstrate that this pair of Ty elements constitutes a preferred site for double-strand DNA breaks when DNA replication is compromised, analogous to the fragile sites observed in mammalian chromosomes.
Collapse
Affiliation(s)
- Francene J Lemoine
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Abstract
Mutations of chromosome replication genes can be one of the early events that promote genomic instability. Among genes that are involved in chromosomal replication, DNA polymerase α is essential for initiation of replication and lagging-strand synthesis. Here we examined the effect of two mutations in S. cerevisiae POL1, pol1-1 and pol1-17, on a microsatellite (GT)16 tract. The pol1-17 mutation elevated the mutation rate 13-fold by altering sequences both inside and downstream of the (GT)16 tract, whereas the pol1-1 mutation increased the mutation rate 54-fold by predominantly altering sequences downstream of the (GT)16 tract in a RAD52-dependent manner. In a rad52 null mutant background pol1-1 and pol1-17 also exhibited different plasmid and chromosome loss phenotypes. Deletions of mismatch repair (MMR) genes induce a differential synergistic increase in the mutation rates of pol1-1 and pol1-17. These findings suggest that perturbations of DNA replication in these two pol1 mutants are caused by different mechanisms, resulting in various types of mutations. Thus, mutations of POL1 can induce a variety of mutator phenotypes and can be a source of genomic instability in cells.
Collapse
Affiliation(s)
- Pedro J A Gutiérrez
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | |
Collapse
|
14
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 804] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
15
|
Butler DK, Gillespie D, Steele B. Formation of large palindromic DNA by homologous recombination of short inverted repeat sequences in Saccharomyces cerevisiae. Genetics 2002; 161:1065-75. [PMID: 12136011 PMCID: PMC1462178 DOI: 10.1093/genetics/161.3.1065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Large DNA palindromes form sporadically in many eukaryotic and prokaryotic genomes and are often associated with amplified genes. The presence of a short inverted repeat sequence near a DNA double-strand break has been implicated in the formation of large palindromes in a variety of organisms. Previously we have established that in Saccharomyces cerevisiae a linear DNA palindrome is efficiently formed from a single-copy circular plasmid when a DNA double-strand break is introduced next to a short inverted repeat sequence. In this study we address whether the linear palindromes form by an intermolecular reaction (that is, a reaction between two identical fragments in a head-to-head arrangement) or by an unusual intramolecular reaction, as it apparently does in other examples of palindrome formation. Our evidence supports a model in which palindromes are primarily formed by an intermolecular reaction involving homologous recombination of short inverted repeat sequences. We have also extended our investigation into the requirement for DNA double-strand break repair genes in palindrome formation. We have found that a deletion of the RAD52 gene significantly reduces palindrome formation by intermolecular recombination and that deletions of two other genes in the RAD52-epistasis group (RAD51 and MRE11) have little or no effect on palindrome formation. In addition, palindrome formation is dramatically reduced by a deletion of the nucleotide excision repair gene RAD1.
Collapse
Affiliation(s)
- David K Butler
- Department of Biological and Physical Sciences, Montana State University, Billings, MT 59101, USA.
| | | | | |
Collapse
|
16
|
Farah JA, Hartsuiker E, Mizuno KI, Ohta K, Smith GR. A 160-bp palindrome is a Rad50.Rad32-dependent mitotic recombination hotspot in Schizosaccharomyces pombe. Genetics 2002; 161:461-8. [PMID: 12019258 PMCID: PMC1462081 DOI: 10.1093/genetics/161.1.461] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Palindromic sequences can form hairpin and cruciform structures that pose a threat to genome integrity. We found that a 160-bp palindrome (an inverted repeat of 80 bp) conferred a mitotic recombination hotspot relative to a control nonpalindromic sequence when inserted into the ade6 gene of Schizosaccharomyces pombe. The hotspot activity of the palindrome, but not the basal level of recombination, was abolished by a rad50 deletion, by a rad50S "separation of function" mutation, or by a rad32-D25A mutation in the nuclease domain of the Rad32 protein, an Mre11 homolog. We propose that upon extrusion of the palindrome the Rad50.Rad32 nuclease complex recognizes and cleaves the secondary structure thus formed and generates a recombinogenic break in the DNA.
Collapse
Affiliation(s)
- Joseph A Farah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | |
Collapse
|
17
|
Stenger JE, Lobachev KS, Gordenin D, Darden TA, Jurka J, Resnick MA. Biased distribution of inverted and direct Alus in the human genome: implications for insertion, exclusion, and genome stability. Genome Res 2001; 11:12-27. [PMID: 11156612 DOI: 10.1101/gr.158801] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alu sequences, the most abundant class of large dispersed DNA repeats in human chromosomes, contribute to human genome dynamics. Recently we reported that long inverted repeats, including human Alus, can be strong initiators of genetic change in yeast. We proposed that the potential for interactions between adjacent, closely related Alus would influence their stability and this would be reflected in their distribution. We have undertaken an extensive computational analysis of all Alus (the database is at http://dir.niehs.nih.gov/ALU) to better understand their distribution and circumstances under which Alu sequences might affect genome stability. Alus separated by <650 bp were categorized according to orientation, length of regions sharing high sequence identity, distance between highly identical regions, and extent of sequence identity. Nearly 50% of all Alu pairs have long alignable regions (>275 bp), corresponding to nearly full-length Alus, regardless of orientation. There are dramatic differences in the distributions and character of Alu pairs with closely spaced, nearly identical regions. For Alu pairs that are directly repetitive, approximately 30% have highly identical regions separated by <20 bp, but only when the alignments correspond to near full-size or half-size Alus. The opposite is found for the distribution of inverted repeats: Alu pairs with aligned regions separated by <20 bp are rare. Furthermore, closely spaced direct and inverted Alus differ in their truncation patterns, suggesting differences in the mechanisms of insertion. At larger distances, the direct and inverted Alu pairs have similar distributions. We propose that sequence identity, orientation, and distance are important factors determining insertion of adjacent Alus, the frequency and spectrum of Alu-associated changes in the genome, and the contribution of Alu pairs to genome instability. Based on results in model systems and the present analysis, closely spaced inverted Alu pairs with long regions of alignment are likely at-risk motifs (ARMs) for genome instability.
Collapse
Affiliation(s)
- J E Stenger
- Laboratory of Structural Biology, National Institute for Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
18
|
Edelmann L, Spiteri E, Koren K, Pulijaal V, Bialer MG, Shanske A, Goldberg R, Morrow BE. AT-rich palindromes mediate the constitutional t(11;22) translocation. Am J Hum Genet 2001; 68:1-13. [PMID: 11095996 PMCID: PMC1234939 DOI: 10.1086/316952] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Accepted: 11/07/2000] [Indexed: 11/03/2022] Open
Abstract
The constitutional t(11;22) translocation is the only known recurrent non-Robertsonian translocation in humans. Offspring are susceptible to der(22) syndrome, a severe congenital anomaly disorder caused by 3&rcolon;1 meiotic nondisjunction events. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat termed "LCR22" and within an AT-rich repeat on 11q23. The LCR22s are implicated in mediating different rearrangements on 22q11, leading to velocardiofacial syndrome/DiGeorge syndrome and cat-eye syndrome by homologous recombination mechanisms. The LCR22s contain AT-rich repetitive sequences, suggesting that such repeats may mediate the t(11;22) translocation. To determine the molecular basis of the translocation, we cloned and sequenced the t(11;22) breakpoint in the derivative 11 and 22 chromosomes in 13 unrelated carriers, including two de novo cases and der(22) syndrome offspring. We found that, in all cases examined, the reciprocal exchange occurred between similar AT-rich repeats on both chromosomes 11q23 and 22q11. To understand the mechanism, we examined the sequence of the breakpoint intervals in the derivative chromosomes and compared this with the deduced normal chromosomal sequence. A palindromic AT-rich sequence with a near-perfect hairpin could form, by intrastrand base-pairing, on the parental chromosomes. The sequence of the breakpoint junction in both derivatives indicates that the exchange events occurred at the center of symmetry of the palindromes, and this resulted in small, overlapping staggered deletions in this region among the different carriers. On the basis of previous studies performed in diverse organisms, we hypothesize that double-strand breaks may occur in the center of the palindrome, the tip of the putative hairpin, leading to illegitimate recombination events between similar AT-rich sequences on chromosomes 11 and 22, resulting in deletions and loss of the palindrome, which then could stabilize the DNA structure.
Collapse
MESH Headings
- AT Rich Sequence/genetics
- Alu Elements/genetics
- Base Sequence
- Blotting, Southern
- Chromosome Breakage/genetics
- Chromosome Deletion
- Chromosome Fragility/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 22/genetics
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- DiGeorge Syndrome/genetics
- Humans
- Hybrid Cells
- Models, Genetic
- Molecular Sequence Data
- Nondisjunction, Genetic
- Nucleic Acid Conformation
- Physical Chromosome Mapping
- Polymerase Chain Reaction
- Recombination, Genetic/genetics
- Sequence Alignment
- Syndrome
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- L. Edelmann
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - E. Spiteri
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - K. Koren
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - V. Pulijaal
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - M. G. Bialer
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - A. Shanske
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - R. Goldberg
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| | - B. E. Morrow
- Department of Molecular Genetics, Albert Einstein College of Medicine, Department of Human Genetics, Mount Sinai Medical Center, Department of Obstetrics and Gynecology and Center for Craniofacial Disorders, Montefiore Medical Center, New York; and Department of Pediatrics, Division of Genetics, North Shore University Hospital, Manhasset, NY
| |
Collapse
|
19
|
Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 2000; 19:3822-30. [PMID: 10899135 PMCID: PMC313988 DOI: 10.1093/emboj/19.14.3822] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nearly one million ALU: repeats in human chromosomes are a potential threat to genome integrity. ALU:s form dense clusters where they frequently appear as inverted repeats, a sequence motif known to cause DNA rearrangements in model organisms. Using a yeast recombination system, we found that inverted ALU: pairs can be strong initiators of genetic instability. The highly recombinagenic potential of inverted ALU: pairs was dependent on the distance between the repeats and the level of sequence divergence. Even inverted ALU:s that were 86% homologous could efficiently stimulate recombination when separated by <20 bp. This stimulation was independent of mismatch repair. Mutations in the DNA metabolic genes RAD27 (FEN1), POL3 (polymerase delta) and MMS19 destabilized widely separated and diverged inverted ALU:s. Having defined factors affecting inverted ALU: repeat stability in yeast, we analyzed the distribution of ALU: pairs in the human genome. Closely spaced, highly homologous inverted ALU:s are rare, suggesting that they are unstable in humans. ALU: pairs were identified that are potential sites of genetic change.
Collapse
Affiliation(s)
- K S Lobachev
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nasar F, Jankowski C, Nag DK. Long palindromic sequences induce double-strand breaks during meiosis in yeast. Mol Cell Biol 2000; 20:3449-58. [PMID: 10779335 PMCID: PMC85638 DOI: 10.1128/mcb.20.10.3449-3458.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inverted-repeated or palindromic sequences have been found to occur in both prokaryotic and eukaryotic genomes. Such repeated sequences are usually short and present at several functionally important regions in the genome. However, long palindromic sequences are rare and are a major source of genomic instability. The palindrome-mediated genomic instability is believed to be due to cruciform or hairpin formation and subsequent cleavage of this structure by structure-specific nucleases. Here we present both genetic and physical evidence that long palindromic sequences (>50 bp) generate double-strand breaks (DSBs) at a high frequency during meiosis in the yeast Saccharomyces cerevisiae. The palindrome-mediated DSB formation depends on the primary sequence of the inverted repeat and the location and length of the repeated units. The DSB formation at the palindrome requires all of the gene products that are known to be responsible for DSB formation at the normal meiosis-specific sites. Since DSBs are initiators of nearly all meiotic recombination events, most of the palindrome-induced breaks appear to be repaired by homologous recombination. Our results suggest that short palindromic sequences are highly stable in vivo. In contrast, long palindromic sequences make the genome unstable by inducing DSBs and such sequences are usually removed from the genome by homologous recombination events.
Collapse
Affiliation(s)
- F Nasar
- Molecular Genetics Program, Wadsworth Center, School of Public Health, State University of New York, Albany, New York 12201, USA
| | | | | |
Collapse
|
21
|
Waldman AS, Tran H, Goldsmith EC, Resnick MA. Long inverted repeats are an at-risk motif for recombination in mammalian cells. Genetics 1999; 153:1873-83. [PMID: 10581292 PMCID: PMC1460879 DOI: 10.1093/genetics/153.4.1873] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Certain DNA sequence motifs and structures can promote genomic instability. We have explored instability induced in mouse cells by long inverted repeats (LIRs). A cassette was constructed containing a herpes simplex virus thymidine kinase (tk) gene into which was inserted an LIR composed of two inverted copies of a 1.1-kb yeast URA3 gene sequence separated by a 200-bp spacer sequence. The tk gene was introduced into the genome of mouse Ltk(-) fibroblasts either by itself or in conjunction with a closely linked tk gene that was disrupted by an 8-bp XhoI linker insertion; rates of intrachromosomal homologous recombination between the markers were determined. Recombination between the two tk alleles was stimulated 5-fold by the LIR, as compared to a long direct repeat (LDR) insert, resulting in nearly 10(-5) events per cell per generation. Of the tk(+) segregants recovered from LIR-containing cell lines, 14% arose from gene conversions that eliminated the LIR, as compared to 3% of the tk(+) segregants from LDR cell lines, corresponding to a >20-fold increase in deletions at the LIR hotspot. Thus, an LIR, which is a common motif in mammalian genomes, is at risk for the stimulation of homologous recombination and possibly other genetic rearrangements.
Collapse
Affiliation(s)
- A S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression.
Collapse
Affiliation(s)
- S Melquist
- Department of Biochemistry, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
23
|
Müller AE, Kamisugi Y, Grüneberg R, Niedenhof I, Hörold RJ, Meyer P. Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol 1999; 291:29-46. [PMID: 10438604 DOI: 10.1006/jmbi.1999.2957] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Illegitimate recombination is the prevailing molecular mechanism for the integration of recombinant DNA into the genome of most eukaryotic systems and the generation of deletions by intrachromosomal recombination. We developed a ?selectable marker system to screen for intrachromosomal illegitimate recombination events in order to assess the sequence and structure-specific requirements for illegitimate recombination in tobacco. In 12 illegitimate recombination products analysed, we found that all deletion termini localise to sites of palindromic structures or to A+T-rich DNA elements. All deletion termini showed microhomologies of two to six nucleotides. In three plants, the recombination products contained filler-DNA or an inversion of an endogenous segment. Our data strongly suggest that illegitimate recombination in plants is mediated by a DNA synthesis-dependent process, and that this mechanism is promoted by DNA regions that can form palindromic structures or facilitate DNA unwinding.
Collapse
|
24
|
Schweitzer JK, Livingston DM. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 1999; 152:953-63. [PMID: 10388815 PMCID: PMC1460650 DOI: 10.1093/genetics/152.3.953] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CAG repeat tracts are unstable in yeast, leading to frequent contractions and infrequent expansions in repeat tract length. To compare CAG repeats to other simple repeats and palindromic sequences, we examined the effect of DNA replication mutations, including alleles of pol alpha, pol delta, pol epsilon, and PCNA (proliferating cell nuclear antigen), on tract stability. Among the polymerase mutations, the pol delta mutation (pol3-14) destabilizes tracts with either CAG or CTG as the lagging strand template. One pol alpha mutation, pol1-1, destabilizes the orientation with CAG as the lagging strand template, but it has little effect on the CTG orientation. In contrast, the pol1-17 mutation has no effect on either orientation. Similarly, mutations in the proofreading functions of pol delta and pol epsilon, as well as a temperature-sensitive pol epsilon mutation, pol2-18, have no effect on tract stability. Three PCNA mutations, pol30-52, pol30-79, and pol30-90, all have drastic effects on tract stability. Of the three, pol30-52 is unique in yielding small tract changes that are indicative of an impairment in mismatch repair. These results show that while CAG repeats are destabilized by many of the same mutations that destabilize other simple repeats, they also have some behaviors that are suggestive of their potential to form hairpin structures.
Collapse
Affiliation(s)
- J K Schweitzer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA
| | | |
Collapse
|
25
|
Connelly JC, Kirkham LA, Leach DR. The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc Natl Acad Sci U S A 1998; 95:7969-74. [PMID: 9653124 PMCID: PMC20913 DOI: 10.1073/pnas.95.14.7969] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hairpin structures can inhibit DNA replication and are intermediates in certain recombination reactions. We have shown that the purified SbcCD protein of Escherichia coli cleaves a DNA hairpin. This cleavage does not require the presence of a free (3' or 5') DNA end and generates products with 3'-hydroxyl and 5'-phosphate termini. Electron microscopy of SbcCD has revealed the "head-rod-tail" structure predicted for the SMC (structural maintenance of chromosomes) family of proteins, of which SbcC is a member. This work provides evidence consistent with the proposal that SbcCD cleaves hairpin structures that halt the progress of the replication fork, allowing homologous recombination to restore DNA replication.
Collapse
Affiliation(s)
- J C Connelly
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
The genomes of all organisms contain an abundance of DNA repeats which are at-risk for causing genetic change. We have used the yeast Saccharomyces cerevisiae to investigate various repeat categories in order to understand their potential for causing genomic instability and the role of DNA metabolism factors. Several types of repeats can increase enormously the likelihood of genetic changes such as mutation or recombination when present either in wild type or mutants defective in replication or repair. Specifically, we have investigated inverted repeats, homonucleotide runs, and short distant repeats and the consequences of various DNA metabolism mutants. Because the at-risk motifs (ARMs) that we characterized are sensitive indicators, we have found that they are useful tools to reveal new genetic factors affecting genome stability as well as to distinguish subtle differences between alleles.
Collapse
Affiliation(s)
- D A Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, 101 Alexander Dr., P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
27
|
Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD, Resnick MA, Gordenin DA. Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 1998; 148:1507-24. [PMID: 9560370 PMCID: PMC1460095 DOI: 10.1093/genetics/148.4.1507] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inverted DNA repeats are an at-risk motif for genetic instability that can induce both deletions and recombination in yeast. We investigated the role of the length of inverted repeats and size of the DNA separating the repeats for deletion and recombination. Stimulation of both deletion and recombination was directly related to the size of inverted repeats and inversely related to the size of intervening spacers. A perfect palindrome, formed by two 1.0-kb URA3-inverted repeats, increased intra- and interchromosomal recombination in the adjacent region 2,400-fold and 17,000-fold, respectively. The presence of a strong origin of replication in the spacer reduced both rates of deletion and recombination. These results support a model in which the stimulation of deletion and recombination by inverted repeats is initiated by a secondary structure formed between single-stranded DNA of inverted repeats during replication.
Collapse
Affiliation(s)
- K S Lobachev
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Connelly JC, de Leau ES, Okely EA, Leach DR. Overexpression, purification, and characterization of the SbcCD protein from Escherichia coli. J Biol Chem 1997; 272:19819-26. [PMID: 9242643 DOI: 10.1074/jbc.272.32.19819] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sbcC and sbcD genes mediate palindrome inviability in Escherichia coli. The sbcCD operon has been cloned into the plasmid pTrc99A under the control of the strong trc promoter and introduced into a strain carrying a chromosomal deletion of sbcCD. The SbcC and SbcD polypeptides were overexpressed to 6% of total cell protein, and both polypeptides copurified in a four-step purification procedure. Purified SbcCD is a processive double-strand exonuclease that has an absolute requirement for Mn2+ and uses ATP as a preferred energy source. Gel filtration chromatography and sedimentation equilibrium analyses were used to show that the SbcC and SbcD polypeptides dissociate at some stage after purification and that this dissociation is reversed by the addition of Mn2+. We demonstrate that SbcD has the potential to form a secondary structural motif found in a number of protein phosphatases and suggest that it is a metalloprotein that contains the catalytic center of the SbcCD exonuclease.
Collapse
Affiliation(s)
- J C Connelly
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
29
|
Nag DK, Kurst A. A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics 1997; 146:835-47. [PMID: 9215890 PMCID: PMC1208054 DOI: 10.1093/genetics/146.3.835] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Palindromic sequences have the potential to form hairpin or cruciform structures, which are putative substrates for several nucleases and mismatch repair enzymes. A genetic method was developed to detect such structures in vivo in the yeast Saccharomyces cerevisiae. Using this method we previously showed that short hairpin structures are poorly repaired by the mismatch repair system in S. cerevisiae. We show here that mismatches, when present in the stem of the hairpin structure, are not processed by the repair machinery, suggesting that they are treated differently than those in the interstrand base-paired duplex DNA. A 140-bp-long palindromic sequence, on the contrary, acts as a meiotic recombination hotspot by generating a site for a double-strand break, an initiator of meiotic recombination. We suggest that long palindromic sequences undergo cruciform extrusion more readily than short ones. This cruciform structure then acts as a substrate for structure-specific nucleases resulting in the formation of a double-strand break during meiosis in yeast. In addition, we show that residual repair of the short hairpin structure occurs in an MSH2-independent pathway.
Collapse
Affiliation(s)
- D K Nag
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany 12201, USA.
| | | |
Collapse
|
30
|
Tran H, Degtyareva N, Gordenin D, Resnick MA. Altered replication and inverted repeats induce mismatch repair-independent recombination between highly diverged DNAs in yeast. Mol Cell Biol 1997; 17:1027-36. [PMID: 9001255 PMCID: PMC231827 DOI: 10.1128/mcb.17.2.1027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Replication, DNA organization, and mismatch repair (MMR) can influence recombination. We examined the effects of altered replication due to a mutation in the polymerase delta gene, long inverted repeats (LIRs) in motifs similar to those in higher eukaryotes, and MMR on intrachromosomal recombination between highly diverged (28%) truncated genes in Saccharomyces cerevisiae. A combination of altered replication and an LIR increased recombination up to 700-fold, while each alone led to a 3- to 20-fold increase. Homeologous recombination was not altered by pms1, msh2, and msh3 mismatch repair mutations. Similar to our previous observations for replication slippage-mediated deletions, there were > or = 5-bp identical runs at the recombination breakpoints. We propose that the dramatic increase in recombination results from enhancement of the effects of altered replication by the LIR, leading to recombinationally active initiating structures. Such interactions predict replication-related, MMR-independent genome changes.
Collapse
Affiliation(s)
- H Tran
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
31
|
Kramer PR, Stringer JR, Sinden RR. Stability of an inverted repeat in a human fibrosarcoma cell. Nucleic Acids Res 1996; 24:4234-41. [PMID: 8932378 PMCID: PMC146229 DOI: 10.1093/nar/24.21.4234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deletions and rearrangements of DNA sequences within the genome of human cells result in mutations associated with human disease. We have developed a selection system involving a neo gene containing a DNA sequence inserted into the NcoI site that can be used to quantitatively assay deletion of this sequence from the chromosome. The spontaneous deletion from the neo gene of a 122 bp inverted repeat occurred at a rate of 2.1 x 10(-8) to <3.1 x 10(-9) revertants/cell/generation in three different cell lines. Deletion of the 122 bp inverted repeat occurred between 6 bp flanking direct repeats. Spontaneous deletion of a 122 bp non-palindromic DNA sequence flanked by direct repeats was not observed, indicating a rate of deletion of <3.1 x 10(-9) revertants/cell/generation. This result demonstrates that a 122 bp inverted repeat can exhibit a low level of instability in some locations in the chromosome of a human cell line.
Collapse
Affiliation(s)
- P R Kramer
- Department of Biochemistry and Biophysics, Texas A&M University, Houston 77030-3303, USA
| | | | | |
Collapse
|
32
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 1996; 63:1-22. [PMID: 8891900 DOI: 10.1002/(sici)1097-4644(199610)63:1%3c1::aid-jcb1%3e3.0.co;2-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA crossovers, four-way junctions, and curved/bent DNA of specific angles. A human cruciform binding protein (CBP) displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication.
Collapse
Affiliation(s)
- C E Pearson
- McGill Cancer Centre, McGill University, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(199610)63:1<1::aid-jcb1>3.0.co;2-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Collick A, Drew J, Penberth J, Bois P, Luckett J, Scaerou F, Jeffreys A, Reik W. Instability of long inverted repeats within mouse transgenes. EMBO J 1996; 15:1163-71. [PMID: 8605887 PMCID: PMC450015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Various sequences in the mammalian genomes are unstable. One class of sequence arrangement is long inverted repeats, which are known to be unstable in bacteria and yeast. While in mammals some evidence suggests that short inverted repeats (<10 bp long) may show instability, nothing is known about the stability of long inverted repeats. Here we describe two unrelated multicopy transgenes in the mouse (loci 109 and OX1-5), each of which contains a long inverted repeat that shows substantial mitotic instability. This instability also occurs in the germline so that mutant transgenes appear within pedigrees at a high frequency. The mutation processes acting at these two inverted repeats are complex and can involve insertion or deletion, and can result in stabilization of the transgene. At transgene 109 mutational events range from very small rearrangements at the centre of the inverted repeat to complete transgene deletion. In addition we show that the rates of mutation at the inverted repeat of transgene OX1-5 can vary between the male and female germlines and between inbred strains of mice, suggesting the possibility of a genetic analysis to identify loci that modulate inverted repeat instability.
Collapse
Affiliation(s)
- A Collick
- Department of Genetics, University of Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Leach DR. Cloning and characterization of DNAs with palindromic sequences. GENETIC ENGINEERING 1996; 18:1-11. [PMID: 8785115 DOI: 10.1007/978-1-4899-1766-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D R Leach
- Institute of Cell and Molecular Biology, University of Edinburgh
| |
Collapse
|
36
|
Tran HT, Degtyareva NP, Koloteva NN, Sugino A, Masumoto H, Gordenin DA, Resnick MA. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol 1995; 15:5607-17. [PMID: 7565712 PMCID: PMC230811 DOI: 10.1128/mcb.15.10.5607] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Small direct repeats, which are frequent in all genomes, are a potential source of genome instability. To study the occurrence and genetic control of repeat-associated deletions, we developed a system in the yeast Saccharomyces cerevisiae that was based on small direct repeats separated by either random sequences or inverted repeats. Deletions were examined in the LYS2 gene, using a set of 31- to 156-bp inserts that included inserts with no apparent potential for secondary structure as well as two quasipalindromes. All inserts were flanked by 6- to 9-bp direct repeats of LYS2 sequence, providing an opportunity for Lys+ reversion via precise excision. Reversions could arise by extended deletions involving either direct repeats or random sequences and by -1-or +2-bp frameshift mutations. The deletion breakpoints were always associated with short (3- to 9-bp) perfect or imperfect direct repeats. Compared with the POL+ strain, deletions between small direct repeats were increased as much as 100-fold, and the spectrum was changed in a temperature-sensitive DNA polymerase delta pol3-t mutant, suggesting a role for replication. The type of deletion depended on orientation relative to the origin of replication. On the basis of these results, we propose (i) that extended deletions between small repeats arise by replication slippage and (ii) that the deletions occur primarily in either the leading or lagging strand. The RAD50 and RAD52 genes, which are required for the recombinational repair of many kinds of DNA double-strand breaks, appeared to be required also for the production of up to 90% of the deletions arising between separated repeats in the pol3-t mutant, suggesting a newly identified role for these genes in genome stability and possibly replication.
Collapse
Affiliation(s)
- H T Tran
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Intrachromosomal recombination between direct repeats can occur either as gene conversion events, which maintain exactly the number of repeat units, or as deletions, which reduce the number of repeat units. Gene conversions are classical recombination events that utilize the standard chromosome recombination machinery. Spontaneous deletions between direct repeats are generally recA-independent in E. coli and RAD52-independent in S. cerevisiae. This independence from the major recombination genes does not mean that deletions form through a nonrecombinational process. Deletions have been suggested to result from sister chromatid exchange at the replication fork in a recA-independent process. The same type of exchange is proposed to be RAD52-independent in Saccharomyces cerevisiae. RAD52-dependent events encompass all events that involve the initial steps of a recombination reaction, which include strand invasion to form a heteroduplex intermediate.
Collapse
Affiliation(s)
- H L Klein
- Department of Biochemistry, New York University Medical Center, NY 10016
| |
Collapse
|
38
|
Prado F, Aguilera A. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Genetics 1995; 139:109-23. [PMID: 7705617 PMCID: PMC1206311 DOI: 10.1093/genetics/139.1.109] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have constructed novel DNA substrates (one inverted and three direct repeats) based on the same 0.6-kb repeat sequence to study deletions and inversions in Saccharomyces cerevisiae. Spontaneous deletions occur six to eight times more frequently than inversions, irrespective of the distance between the repeats. This difference can be explained by the observation that deletion events can be mediated by a recombination mechanism that can initiate within the intervening sequence of the repeats. Spontaneous and double-strand break (DSB)-induced deletions occur as RAD52-dependent and RAD52-independent events. Those deletion events initiated through a DSB in the unique intervening sequence require the Rad1/Rad10 endonuclease only if the break is distantly located from the flanking DNA repeats. We propose that deletions can occur as three types of recombination events: the conservative RAD52-dependent reciprocal exchange and the nonconservative events, one-ended invasion crossover, and single-strand annealing (SSA). We suggest that one-ended invasion is RAD52 dependent, whereas SSA is RAD52 independent. Whereas deletions, like inversions, occur through reciprocal exchange, deletions can also occur through SSA or one-ended invasion. We propose that the contribution of reciprocal exchange and one-ended invasion crossover vs. SSA events to overall spontaneous deletions is a feature specific for each repeat system, determined by the initiation event and the availability of the Rad52 protein. We discuss the role of the Rad1/Rad10 endonuclease on the initial steps of one-ended invasion crossover and SSA as a function of the location of the initiation event relative to the repeats. We also show that the frequency of recombination between repeats is the same independent of their location (whether on circular plasmids, linear minichromosomes, or natural chromosomes) and have similar RAD52 dependence.
Collapse
Affiliation(s)
- F Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | |
Collapse
|
39
|
Leach DR. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays 1994; 16:893-900. [PMID: 7840768 DOI: 10.1002/bies.950161207] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Long DNA palindromes pose a threat to genome stability. This instability is primarily mediated by slippage on the lagging strand of the replication fork between short directly repeated sequences close to the ends of the palindrome. The role of the palindrome is likely to be the juxtaposition of the directly repeated sequences by intra-strand base-pairing. This intra-strand base-pairing, if present on both strands, results in a cruciform structure. In bacteria, cruciform structures have proved difficult to detect in vivo, suggesting that if they form, they are either not replicated or are destroyed. SbcCD, a recently discovered exonuclease of Escherichia coli, is responsible for preventing the replication of long palindromes. These observations lead to the proposal that cells may have evolved a post-replicative mechanism for the elimination and/or repair of large DNA secondary structures.
Collapse
Affiliation(s)
- D R Leach
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| |
Collapse
|
40
|
Abstract
While inverted DNA repeats are generally acknowledged to be an important source of genetic instability in prokaryotes, relatively little is known about their effects in eukaryotes. Using bacterial transposon Tn5 and its derivatives, we demonstrate that long inverted repeats also cause genetic instability leading to deletion in the yeast Saccharomyces cerevisiae. Furthermore, they induce homologous recombination. Replication plays a major role in the deletion formation. Deletions are stimulated by a mutation in the DNA polymerase delta gene (pol3). The majority of deletions result from imprecise excision between small (4- to 6-bp) repeats in a polar fashion, and they often generate quasipalindrome structures that subsequently may be highly unstable. Breakpoints are clustered near the ends of the long inverted repeats (< 150 bp). The repeats have both intra- and interchromosomal effects in that they also create hot spots for mitotic interchromosomal recombination. Intragenic recombination is 4 to 18 times more frequent for heteroalleles in which one of the two mutations is due to the insertion of a long inverted repeat, compared with other pairs of heteroalleles in which neither mutation has a long repeat. We propose that both deletion and recombination are the result of altered replication at the basal part of the stem formed by the inverted repeats.
Collapse
|
41
|
Gordenin DA, Lobachev KS, Degtyareva NP, Malkova AL, Perkins E, Resnick MA. Inverted DNA repeats: a source of eukaryotic genomic instability. Mol Cell Biol 1993; 13:5315-22. [PMID: 8395002 PMCID: PMC360228 DOI: 10.1128/mcb.13.9.5315-5322.1993] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While inverted DNA repeats are generally acknowledged to be an important source of genetic instability in prokaryotes, relatively little is known about their effects in eukaryotes. Using bacterial transposon Tn5 and its derivatives, we demonstrate that long inverted repeats also cause genetic instability leading to deletion in the yeast Saccharomyces cerevisiae. Furthermore, they induce homologous recombination. Replication plays a major role in the deletion formation. Deletions are stimulated by a mutation in the DNA polymerase delta gene (pol3). The majority of deletions result from imprecise excision between small (4- to 6-bp) repeats in a polar fashion, and they often generate quasipalindrome structures that subsequently may be highly unstable. Breakpoints are clustered near the ends of the long inverted repeats (< 150 bp). The repeats have both intra- and interchromosomal effects in that they also create hot spots for mitotic interchromosomal recombination. Intragenic recombination is 4 to 18 times more frequent for heteroalleles in which one of the two mutations is due to the insertion of a long inverted repeat, compared with other pairs of heteroalleles in which neither mutation has a long repeat. We propose that both deletion and recombination are the result of altered replication at the basal part of the stem formed by the inverted repeats.
Collapse
Affiliation(s)
- D A Gordenin
- Department of Genetics, St. Petersburg State University, Russia
| | | | | | | | | | | |
Collapse
|