1
|
Varon M, Dovrat D, Heuzé J, Tsirkas I, Singh SP, Pasero P, Galletto R, Aharoni A. Rrm3 and Pif1 division of labor during replication through leading and lagging strand G-quadruplex. Nucleic Acids Res 2024; 52:1753-1762. [PMID: 38117984 PMCID: PMC10899776 DOI: 10.1093/nar/gkad1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Members of the conserved Pif1 family of 5'-3' DNA helicases can unwind G4s and mitigate their negative impact on genome stability. In Saccharomyces cerevisiae, two Pif1 family members, Pif1 and Rrm3, contribute to the suppression of genomic instability at diverse regions including telomeres, centromeres and tRNA genes. While Pif1 can resolve lagging strand G4s in vivo, little is known regarding Rrm3 function at G4s and its cooperation with Pif1 for G4 replication. Here, we monitored replication through G4 sequences in real time to show that Rrm3 is essential for efficient replisome progression through G4s located on the leading strand template, but not on the lagging strand. We found that Rrm3 importance for replication through G4s is dependent on its catalytic activity and its N-terminal unstructured region. Overall, we show that Rrm3 and Pif1 exhibit a division of labor that enables robust replication fork progression through leading and lagging strand G4s, respectively.
Collapse
Affiliation(s)
- Mor Varon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Jonathan Heuzé
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier, France
| | - Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier, France
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
2
|
Muellner J, Schmidt KH. Helicase activities of Rad5 and Rrm3 genetically interact in the prevention of recombinogenic DNA lesions in Saccharomyces cerevisiae. DNA Repair (Amst) 2023; 126:103488. [PMID: 37054652 PMCID: PMC10399609 DOI: 10.1016/j.dnarep.2023.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The genome must be monitored to ensure its duplication is completed accurately to prevent genome instability. In Saccharomyces cerevisiae, the 5' to 3' DNA helicase Rrm3, a member of the conserved PIF1 family, facilitates replication fork progression through an unknown mechanism. Disruption of Rrm3 helicase activity leads to increased replication fork pausing throughout the yeast genome. Here, we show that Rrm3 contributes to replication stress tolerance in the absence of the fork reversal activity of Rad5, defined by its HIRAN domain and DNA helicase activity, but not in the absence of Rad5's ubiquitin ligase activity. The Rrm3 and Rad5 helicase activities also interact in the prevention of recombinogenic DNA lesions, and DNA lesions that accumulate in their absence need to be salvaged by a Rad59-dependent recombination pathway. Disruption of the structure-specific endonuclease Mus81 leads to accumulation of recombinogenic DNA lesions and chromosomal rearrangements in the absence of Rrm3, but not Rad5. Thus, at least two mechanisms exist to overcome fork stalling at replication barriers, defined by Rad5-mediated fork reversal and Mus81-mediated cleavage, and contribute to the maintenance of chromosome stability in the absence of Rrm3.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kristina H Schmidt
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
3
|
Shyian M, Shore D. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes. Front Cell Dev Biol 2021; 9:672510. [PMID: 34124054 PMCID: PMC8194067 DOI: 10.3389/fcell.2021.672510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
During nuclear DNA replication multiprotein replisome machines have to jointly traverse and duplicate the total length of each chromosome during each cell cycle. At certain genomic locations replisomes encounter tight DNA-protein complexes and slow down. This fork pausing is an active process involving recognition of a protein barrier by the approaching replisome via an evolutionarily conserved Fork Pausing/Protection Complex (FPC). Action of the FPC protects forks from collapse at both programmed and accidental protein barriers, thus promoting genome integrity. In addition, FPC stimulates the DNA replication checkpoint and regulates topological transitions near the replication fork. Eukaryotic cells have been proposed to employ physiological programmed fork pausing for various purposes, such as maintaining copy number at repetitive loci, precluding replication-transcription encounters, regulating kinetochore assembly, or controlling gene conversion events during mating-type switching. Here we review the growing number of approaches used to study replication pausing in vivo and in vitro as well as the characterization of additional factors recently reported to modulate fork pausing in different systems. Specifically, we focus on the positive role of topoisomerases in fork pausing. We describe a model where replisome progression is inherently cautious, which ensures general preservation of fork stability and genome integrity but can also carry out specialized functions at certain loci. Furthermore, we highlight classical and novel outstanding questions in the field and propose venues for addressing them. Given how little is known about replisome pausing at protein barriers in human cells more studies are required to address how conserved these mechanisms are.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Doi G, Okada S, Yasukawa T, Sugiyama Y, Bala S, Miyazaki S, Kang D, Ito T. Catalytically inactive Cas9 impairs DNA replication fork progression to induce focal genomic instability. Nucleic Acids Res 2021; 49:954-968. [PMID: 33398345 PMCID: PMC7826275 DOI: 10.1093/nar/gkaa1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Catalytically inactive Cas9 (dCas9) has become an increasingly popular tool for targeted gene activation/inactivation, live-cell imaging, and base editing. While dCas9 was reported to induce base substitutions and indels, it has not been associated with structural variations. Here, we show that dCas9 impedes replication fork progression to destabilize tandem repeats in budding yeast. When targeted to the CUP1 array comprising ∼16 repeat units, dCas9 induced its contraction in most cells, especially in the presence of nicotinamide. Replication intermediate analysis demonstrated replication fork stalling in the vicinity of dCas9-bound sites. Genetic analysis indicated that while destabilization is counteracted by the replisome progression complex components Ctf4 and Mrc1 and the accessory helicase Rrm3, it involves single-strand annealing by the recombination proteins Rad52 and Rad59. Although dCas9-mediated replication fork stalling is a potential risk in conventional applications, it may serve as a novel tool for both mechanistic studies and manipulation of genomic instability.
Collapse
Affiliation(s)
- Goro Doi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Siqin Bala
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Miyazaki
- Kyushu University School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1853-1867. [PMID: 32265288 PMCID: PMC7263696 DOI: 10.1534/g3.120.401137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.
Collapse
|
6
|
Muellner J, Schmidt KH. Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family. Genes (Basel) 2020; 11:genes11020224. [PMID: 32093266 PMCID: PMC7073672 DOI: 10.3390/genes11020224] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
The two PIF1 family helicases in Saccharomyces cerevisiae, Rrm3, and ScPif1, associate with thousands of sites throughout the genome where they perform overlapping and distinct roles in telomere length maintenance, replication through non-histone proteins and G4 structures, lagging strand replication, replication fork convergence, the repair of DNA double-strand break ends, and transposable element mobility. ScPif1 and its fission yeast homolog Pfh1 also localize to mitochondria where they protect mitochondrial genome integrity. In addition to yeast serving as a model system for the rapid functional evaluation of human Pif1 variants, yeast cells lacking Rrm3 have proven useful for elucidating the cellular response to replication fork pausing at endogenous sites. Here, we review the increasingly important cellular functions of the yeast PIF1 helicases in maintaining genome integrity, and highlight recent advances in our understanding of their roles in facilitating fork progression through replisome barriers, their functional interactions with DNA repair, and replication stress response pathways.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
7
|
Pohl TJ, Zakian VA. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair (Amst) 2019; 84:102633. [PMID: 31231063 DOI: 10.1016/j.dnarep.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023]
Abstract
An R-loop is a structure that forms when an RNA transcript stays bound to the DNA strand that encodes it and leaves the complementary strand exposed as a loop of single stranded DNA. R-loops accumulate when the processing of RNA transcripts is impaired. The failure to remove these RNA-DNA hybrids can lead to replication fork stalling and genome instability. Resolution of R-loops is thought to be mediated mainly by RNase H enzymes through the removal and degradation of the RNA in the hybrid. However, DNA helicases can also dismantle R-loops by displacing the bound RNA. In particular, the Pif1 family DNA helicases have been shown to regulate R-loop formation at specific genomic loci, such as tRNA genes and centromeres. Here we review the roles of Pif1 family helicases in vivo and in vitro and discuss evidence that Pif1 family helicases act on RNA-DNA hybrids and highlight their potential roles in complementing RNase H for R-loop resolution.
Collapse
Affiliation(s)
- Thomas J Pohl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
8
|
Krol K, Jendrysek J, Debski J, Skoneczny M, Kurlandzka A, Kaminska J, Dadlez M, Skoneczna A. Ribosomal DNA status inferred from DNA cloud assays and mass spectrometry identification of agarose-squeezed proteins interacting with chromatin (ASPIC-MS). Oncotarget 2018; 8:24988-25004. [PMID: 28212567 PMCID: PMC5421904 DOI: 10.18632/oncotarget.15332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a “DNA cloud assay”. We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).
Collapse
Affiliation(s)
- Kamil Krol
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Warsaw, 02-106, Poland
| | - Justyna Jendrysek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Warsaw, 02-106, Poland
| | - Janusz Debski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Mass Spectrometry Laboratory, Warsaw, 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Warsaw, 02-106, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Warsaw, 02-106, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Mass Spectrometry Laboratory, Warsaw, 02-106, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Warsaw, 02-106, Poland
| |
Collapse
|
9
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
10
|
Muñoz-Galván S, García-Rubio M, Ortega P, Ruiz JF, Jimeno S, Pardo B, Gómez-González B, Aguilera A. A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination. PLoS Genet 2017; 13:e1006781. [PMID: 28475600 PMCID: PMC5438189 DOI: 10.1371/journal.pgen.1006781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/19/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling, accumulates at highly transcribed regions and prevents not only transcription-induced replication fork stalling but also transcription-associated hyper-recombination. This led us to explore the possible role of Rrm3 in the repair of DSBs when originating at the passage of the replication fork. Using a mini-HO system that induces mainly single-stranded DNA breaks, we show that rrm3Δ cells are defective in DSB repair. The defect is clearly seen in sister chromatid recombination, the major repair pathway of replication-born DSBs. Our results indicate that Rrm3 recruitment to replication-born DSBs is crucial for viability, uncovering a new role for Rrm3 in the repair of broken replication forks. DNA replication needs to be precise to ensure cell survival and to avoid genetic instability. Different DNA obstacles, such as those originated by transcription, frequently hamper replication fork progression leading to fork stalling or even fork breakage. This requires the homologous recombination machinery to repair the damage. Here, we uncovered a role for yeast Rrm3, a replisome component known to promote replication upon fork stalling, in the repair of replication-born double strand breaks. In particular, rrm3Δ cells show a defect in the recombination with the sister chromatid, the preferred template for the maintenance of genome integrity. Our results support the possibility that the known accumulation of Rrm3 at sites of active transcription reflects an active role of Rrm3 in the repair of broken forks.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Jose F. Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Benjamin Pardo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AA); (BGG)
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AA); (BGG)
| |
Collapse
|
11
|
Syed S, Desler C, Rasmussen LJ, Schmidt KH. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression. PLoS Genet 2016; 12:e1006451. [PMID: 27923055 PMCID: PMC5140057 DOI: 10.1371/journal.pgen.1006451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. When cells duplicate their genome, the replication machinery is constantly at risk of encountering obstacles, including unusual DNA structures, bound proteins, or transcribing polymerases and transcripts. Cells possess DNA helicases that facilitate movement of the replication fork through such obstacles. Here, we report the discovery that one of these DNA helicases, Rrm3, is also required for restricting DNA synthesis under replication stress. We find that the site in Rrm3 critical for this new replication function is also required for binding a subunit of the replication origin recognition complex, which raises the possibility that Rrm3 controls replication by affecting initiation. This is supported by our finding that Rrm3 associates with a subset of replication origins. Rrm3’s ability to restrict replication does not require its helicase activity or the phosphorylation site that regulates this activity. Notably, cells need error-free bypass pathways and homologous recombination to deal with DNA lesions that arise when the helicase function of Rrm3 is disrupted, but not when its replication function is disrupted. This indicates that the DNA lesions that form in the absence of the two distinct Rrm3 function are different, although both activate the DNA-damage checkpoint and are toxic to cells that lack the mediator of the replication checkpoint Mrc1.
Collapse
Affiliation(s)
- Salahuddin Syed
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- Graduate Program in Cellular and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene J. Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Syeda AH, Atkinson J, Lloyd RG, McGlynn P. The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication. Genes (Basel) 2016; 7:genes7080042. [PMID: 27483323 PMCID: PMC4999830 DOI: 10.3390/genes7080042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023] Open
Abstract
Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which the replisome can be reloaded. There is significant interplay between accessory helicases and recombination enzymes in both bacteria and lower eukaryotes but how these replication repair systems interact to ensure efficient genome duplication remains unclear. Here, we demonstrate that the DNA content defects of Escherichia coli cells lacking the strand exchange protein RecA are driven primarily by conflicts between replication and transcription, as is the case in cells lacking the accessory helicase Rep. However, in contrast to Rep, neither RecA nor RecBCD, the helicase/exonuclease that loads RecA onto dsDNA ends, is important for maintaining rapid chromosome duplication. Furthermore, RecA and RecBCD together can sustain viability in the absence of accessory replicative helicases but only when transcriptional barriers to replication are suppressed by an RNA polymerase mutation. Our data indicate that the minimisation of replisome pausing by accessory helicases has a more significant impact on successful completion of chromosome duplication than recombination-directed fork repair.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
13
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
14
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
15
|
Accessory Replicative Helicases and the Replication of Protein-Bound DNA. J Mol Biol 2014; 426:3917-3928. [DOI: 10.1016/j.jmb.2014.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022]
|
16
|
Chung WH. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis. J Microbiol 2014; 52:89-98. [PMID: 24500472 DOI: 10.1007/s12275-014-3524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea,
| |
Collapse
|
17
|
Abstract
Helicases are fundamental components of all replication complexes since unwinding of the double-stranded template to generate single-stranded DNA is essential to direct DNA synthesis by polymerases. However, helicases are also required in many other steps of DNA replication. Replicative helicases not only unwind the template DNA but also play key roles in regulating priming of DNA synthesis and coordination of leading and lagging strand DNA polymerases. Accessory helicases also aid replicative helicases in unwinding of the template strands in the presence of proteins bound to the DNA, minimising the risks posed by nucleoprotein complexes to continued fork movement. Helicases also play critical roles in Okazaki fragment processing in eukaryotes and may also be needed to minimise topological problems when replication forks converge. Thus fork movement, coordination of DNA synthesis, lagging strand maturation and termination of replication all depend on helicases. Moreover, if disaster strikes and a replication fork breaks down then reloading of the replication machinery is effected by helicases, at least in bacteria. This chapter describes how helicases function in these multiple steps at the fork and how DNA unwinding is coordinated with other catalytic processes to ensure efficient, high fidelity duplication of the genetic material in all organisms.
Collapse
Affiliation(s)
- Peter McGlynn
- Department of Biology, University of York, York, Yorkshire, UK,
| |
Collapse
|
18
|
Bochman ML, Judge CP, Zakian VA. The Pif1 family in prokaryotes: what are our helicases doing in your bacteria? Mol Biol Cell 2011; 22:1955-9. [PMID: 21670310 PMCID: PMC3113762 DOI: 10.1091/mbc.e11-01-0045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pif1 family helicases, which are found in nearly all eukaryotes, have important roles in both nuclear and mitochondrial genome maintenance. Recently, the increasing availability of genome sequences has revealed that Pif1 helicases are also widely found in diverse prokaryotes, but it is currently unknown what physiological function(s) prokaryotic Pif1 helicases might perform. This Perspective aims to briefly introduce the reader to the well-studied eukaryotic Pif1 family helicases and speculate on what roles such enzymes may play in bacteria. On the basis of our hypotheses, we predict that Pif1 family helicases are important for resolving common issues that arise during DNA replication, recombination, and repair rather than functioning in a eukaryotic-specific manner.
Collapse
Affiliation(s)
- Matthew L Bochman
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | | | |
Collapse
|
19
|
Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 2011; 714:33-43. [PMID: 21741981 DOI: 10.1016/j.mrfmmm.2011.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.
Collapse
|
20
|
Helicases that underpin replication of protein-bound DNA in Escherichia coli. Biochem Soc Trans 2011; 39:606-10. [DOI: 10.1042/bst0390606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A pre-requisite for successful cell division in any organism is synthesis of an accurate copy of the genetic information needed for survival. This copying process is a mammoth task, given the amount of DNA that must be duplicated, but potential blocks to replication fork movement also pose a challenge for genome duplication. Damage to the template inhibits the replication machinery but proteins bound to the template such as RNA polymerases also present barriers to replication. This review discusses recent results from Escherichia coli that shed light on the roles of helicases in overcoming protein–DNA barriers to replication and that may illustrate fundamental aspects of how duplication of protein-bound DNA is underpinned in all organisms.
Collapse
|
21
|
Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1002015. [PMID: 21436897 PMCID: PMC3060066 DOI: 10.1371/journal.pgen.1002015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.
Collapse
Affiliation(s)
- Derek L. Lindstrom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christina K. Leverich
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kiersten A. Henderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel E. Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
22
|
Atkinson J, Gupta MK, Rudolph CJ, Bell H, Lloyd RG, McGlynn P. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res 2010; 39:949-57. [PMID: 20923786 PMCID: PMC3035471 DOI: 10.1093/nar/gkq889] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genome duplication requires accessory helicases to displace proteins ahead of advancing replication forks. Escherichia coli contains three helicases, Rep, UvrD and DinG, that might promote replication of protein-bound DNA. One of these helicases, Rep, also interacts with the replicative helicase DnaB. We demonstrate that Rep is the only putative accessory helicase whose absence results in an increased chromosome duplication time. We show also that the interaction between Rep and DnaB is required for Rep to maintain rapid genome duplication. Furthermore, this Rep-DnaB interaction is critical in minimizing the need for both recombinational processing of blocked replication forks and replisome reassembly, indicating that colocalization of Rep and DnaB minimizes stalling and subsequent inactivation of replication forks. These data indicate that E. coli contains only one helicase that acts as an accessory motor at the fork in wild-type cells, that such an activity is critical for the maintenance of rapid genome duplication and that colocalization with the replisome is crucial for this function. Given that the only other characterized accessory motor, Saccharomyces cerevisiae Rrm3p, associates physically with the replisome, our demonstration of the functional importance of such an association indicates that colocalization may be a conserved feature of accessory replicative motors.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | |
Collapse
|
23
|
Paeschke K, McDonald KR, Zakian VA. Telomeres: structures in need of unwinding. FEBS Lett 2010; 584:3760-72. [PMID: 20637196 DOI: 10.1016/j.febslet.2010.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/26/2022]
Abstract
Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
24
|
Abstract
Helicases are ubiquitous enzymes found in all organisms that are necessary for all (or virtually all) aspects of nucleic acid metabolism. The Pif1 helicase family is a group of 5'-->3' directed, ATP-dependent, super family IB helicases found in nearly all eukaryotes. Here, we review the discovery, evolution, and what is currently known about these enzymes in Saccharomyces cerevisiae (ScPif1 and ScRrm3), Schizosaccharomyces pombe (SpPfh1), Trypanosoma brucei (TbPIF1, 2, 5, and 8), mice (mPif1), and humans (hPif1). Pif1 helicases variously affect telomeric, ribosomal, and mitochondrial DNA replication, as well as Okazaki fragment maturation, and in at least some cases affect these processes by using their helicase activity to disrupt stable nucleoprotein complexes. While the functions of these enzymes vary within and between organisms, it is evident that Pif1 family helicases are crucial for both nuclear and mitochondrial genome maintenance.
Collapse
Affiliation(s)
- Matthew L Bochman
- Department of Molecular Biology, Princeton University, 101 Lewis Thomas Laboratory, Washington Rd., Princeton, NJ 08544, USA
| | | | | |
Collapse
|
25
|
Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, Rudolph CJ, Moon PB, van Knippenberg IC, Cadman CJ, Dillingham MS, Lloyd RG, McGlynn P. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 2009; 36:654-66. [PMID: 19941825 PMCID: PMC2807033 DOI: 10.1016/j.molcel.2009.11.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/20/2009] [Accepted: 11/09/2009] [Indexed: 10/28/2022]
Abstract
Nucleoprotein complexes present challenges to genome stability by acting as potent blocks to replication. One attractive model of how such conflicts are resolved is direct targeting of blocked forks by helicases with the ability to displace the blocking protein-DNA complex. We show that Rep and UvrD each promote movement of E. coli replisomes blocked by nucleoprotein complexes in vitro, that such an activity is required to clear protein blocks (primarily transcription complexes) in vivo, and that a polarity of translocation opposite that of the replicative helicase is critical for this activity. However, these two helicases are not equivalent. Rep but not UvrD interacts physically and functionally with the replicative helicase. In contrast, UvrD likely provides a general means of protein-DNA complex turnover during replication, repair, and recombination. Rep and UvrD therefore provide two contrasting solutions as to how organisms may promote replication of protein-bound DNA.
Collapse
Affiliation(s)
- Colin P Guy
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Mol Genet Genomics 2009; 281:497-509. [PMID: 19205745 DOI: 10.1007/s00438-009-0426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizosaccharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2 rad3 ( ts ) cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (approximately 100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2 cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance.
Collapse
|
27
|
The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA. Mol Cell Biol 2008; 28:6594-608. [PMID: 18725402 DOI: 10.1128/mcb.00191-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5'-3' DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G(2) arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Delta cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.
Collapse
|
28
|
Abstract
Accurate and complete replication of the genome in every cell division is a prerequisite of genomic stability. Thus, both prokaryotic and eukaryotic replication forks are extremely precise and robust molecular machines that have evolved to be up to the task. However, it has recently become clear that the replication fork is more of a hurdler than a runner: it must overcome various obstacles present on its way. Such obstacles can be called natural impediments to DNA replication, as opposed to external and genetic factors. Natural impediments to DNA replication are particular DNA binding proteins, unusual secondary structures in DNA, and transcription complexes that occasionally (in eukaryotes) or constantly (in prokaryotes) operate on replicating templates. This review describes the mechanisms and consequences of replication stalling at various natural impediments, with an emphasis on the role of replication stalling in genomic instability.
Collapse
Affiliation(s)
- Ekaterina V. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Sergei M. Mirkin
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
- Corresponding author. Present address: Department of Biology, Tufts University, Medford, MA 02155. Phone: (617) 627-4794. Fax: (617) 627-3805. E-mail:
| |
Collapse
|
29
|
Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 2006; 20:3104-16. [PMID: 17114583 PMCID: PMC1635146 DOI: 10.1101/gad.1478906] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Saccharomyces cerevisiae DNA helicase Rrm3p is needed for normal fork progression through >1000 discrete sites scattered throughout the genome. Here we show that replication of all yeast chromosomes was markedly delayed in rrm3 cells. Delayed replication was seen even in a region that lacks any predicted Rrm3p-dependent sites. Based on the pattern of replication intermediates in two-dimensional gels, the rate of fork movement in rrm3 cells appeared similar to wild-type except at known Rrm3p-dependent sites. These data suggest that although Rrm3p has a global role in DNA replication, its activity is needed only or primarily at specific, difficult-to-replicate sites. By the criterion of chromatin immunoprecipitation, Rrm3p was associated with both Rrm3p-dependent and -independent sites, and moved with the replication fork through both. In addition, Rrm3p interacted with Pol2p, the catalytic subunit of DNA polymerase epsilon, in vivo. Thus, rather than being recruited to its sites of action when replication forks stall at these sites, Rrm3p is likely a component of the replication fork apparatus.
Collapse
Affiliation(s)
- Anna Azvolinsky
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
30
|
Schmidt KH, Kolodner RD. Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc Natl Acad Sci U S A 2006; 103:18196-201. [PMID: 17114288 PMCID: PMC1838729 DOI: 10.1073/pnas.0608566103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae mutants lacking two of the three DNA helicases Sgs1, Srs2, and Rrm3 exhibit slow growth that is suppressed by disrupting homologous recombination. Cells lacking Sgs1 and Rrm3 accumulate gross-chromosomal rearrangements (GCRs) that are suppressed by the DNA damage checkpoint and by homologous recombination-defective mutations. In contrast, rrm3, srs2, and srs2 rrm3 mutants have wild-type GCR rates. GCR types in helicase double mutants include telomere additions, translocations, and broken DNAs healed by a complex process of hairpin-mediated inversion. Spontaneous activation of the Rad53 checkpoint kinase in the rrm3 mutant depends on the Mec3/Rad24 DNA damage sensors and results from activation of the Mec1/Rad9-dependent DNA damage response rather than the Mrc1-dependent replication stress response. Moreover, helicase double mutants accumulate Rad51-dependent Ddc2 foci, indicating the presence of recombination intermediates that are sensed by checkpoints. These findings demonstrate that different nonreplicative helicases function at the interface between replication and repair to maintain genome integrity.
Collapse
Affiliation(s)
- Kristina H. Schmidt
- *Ludwig Institute for Cancer Research and
- Division of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL 33620
- To whom correspondence may be sent at the † address. E-mail:
| | - Richard D. Kolodner
- *Ludwig Institute for Cancer Research and
- Departments of Medicine and Cellular and Molecular Medicine and Cancer Center, University of California at San Diego, La Jolla, CA 92093; and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
31
|
Wagner M, Price G, Rothstein R. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics 2006; 174:555-73. [PMID: 16816432 PMCID: PMC1602079 DOI: 10.1534/genetics.104.036905] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 06/30/2006] [Indexed: 12/25/2022] Open
Abstract
RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.
Collapse
Affiliation(s)
- Marisa Wagner
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
32
|
Boulé JB, Zakian VA. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res 2006; 34:4147-53. [PMID: 16935874 PMCID: PMC1616966 DOI: 10.1093/nar/gkl561] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 11/12/2022] Open
Abstract
The Pif1p family of DNA helicases is conserved from yeast to humans. To date, four members of this family have been analyzed in some detail by in vitro and in vivo assays: the two baker's yeast helicases, ScPif1p and Rrm3p, the fission yeast Pfh1p and the human enzyme hPif1p. In vitro, these enzymes are 5' to 3' DNA helicase and show little processivity. In vivo, ScPif1p, Rrm3p and probably Pfh1p, function in both the nucleus at specific genomic loci and in mitochondria, where they are needed for the stable maintenance of the genome as accessory helicases to the replication machinery. Interestingly, they act on common DNA substrates but appear to have largely non-overlapping cellular functions, ranging from Okazaki fragment processing, telomerase inhibition, to helping the replication fork progress through non-nucleosomal protein-DNA complexes. For example, both ScPif1p and Rrm3p affect the replication of telomeres, but in a different way: Pif1p inhibits telomerase-mediated telomere elongation by directly removing telomerase from a DNA end, whereas Rrm3p facilitates replication through telomeric DNA. Here we review the current knowledge on the Pif1-like helicases, as a first step towards understanding the basis of their functional specialization and mechanism of action.
Collapse
Affiliation(s)
- Jean-Baptiste Boulé
- Department of Molecular Biology, Lewis Thomas Laboratories, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
33
|
Hepfer CE, Arnold-Croop S, Fogell H, Steudel KG, Moon M, Roff A, Zaikoski S, Rickman A, Komsisky K, Harbaugh DL, Lang GI, Keil RL. DEG1, encoding the tRNA:pseudouridine synthase Pus3p, impacts HOT1-stimulated recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:528-38. [PMID: 16231152 DOI: 10.1007/s00438-005-0042-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 08/06/2005] [Indexed: 11/28/2022]
Abstract
In Saccharomyces cerevisiae, HOT1-stimulated recombination has been implicated in maintaining homology between repeated ribosomal RNA genes. The ability of HOT1 to stimulate genetic exchange requires RNA polymerase I transcription across the recombining sequences. The trans-acting nuclear mutation hrm3-1 specifically reduces HOT1-dependent recombination and prevents cell growth at 37 degrees . The HRM3 gene is identical to DEG1. Excisive, but not gene replacement, recombination is reduced in HOT1-adjacent sequences in deg1Delta mutants. Excisive recombination within the genomic rDNA repeats is also decreased. The hypo-recombination and temperature-sensitive phenotypes of deg1Delta mutants are recessive. Deletion of DEG1 did not affect the rate of transcription from HOT1 or rDNA suggesting that while transcription is necessary it is not sufficient for HOT1 activity. Pseudouridine synthase 3 (Pus3p), the DEG1 gene product, modifies the anticodon arm of transfer RNA at positions 38 and 39 by catalyzing the conversion of uridine to pseudouridine. Cells deficient in pseudouridine synthases encoded by PUS1, PUS2 or PUS4 displayed no recombination defects, indicating that Pus3p plays a specific role in HOT1 activity. Pus3p is unique in its ability to modulate frameshifting and readthrough events during translation, and this aspect of its activity may be responsible for HOT1 recombination phenotypes observed in deg1 mutants.
Collapse
Affiliation(s)
- C E Hepfer
- Department of Biology, Millersville University, 50 East Frederick Street, PO Box 1002, Millersville, PA 17551, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 2005; 19:1905-19. [PMID: 16103218 PMCID: PMC1186190 DOI: 10.1101/gad.337205] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic cells regulate the progression and integrity of DNA replication forks to maintain genomic stability and couple DNA synthesis to other processes. The budding yeast proteins Mrc1 and Tof1 associate with the putative MCM-Cdc45 helicase and limit progression of the replisome when nucleotides are depleted, and the checkpoint kinases Mec1 and Rad53 stabilize such stalled forks and prevent disassembly of the replisome. Forks also pause transiently during unperturbed chromosome replication, at sites where nonnucleosomal proteins bind DNA tightly. We describe a method for inducing prolonged pausing of forks at protein barriers assembled at unique sites on a yeast chromosome, allowing us to examine for the first time the effects of pausing upon replisome integrity. We show that paused forks maintain an intact replisome that contains Mrc1, Tof1, MCM-Cdc45, GINS, and DNA polymerases alpha and epsilon and that recruits the Rrm3 helicase. Surprisingly, pausing does not require Mrc1, although Tof1 and Csm3 are both important. In addition, the integrity of the paused forks does not require Mec1, Rad53, or recombination. We also show that paused forks at analogous barriers in the rDNA are regulated similarly. These data indicate that paused and stalled eukaryotic replisomes resemble each other but are regulated differently.
Collapse
Affiliation(s)
- Arturo Calzada
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | | | |
Collapse
|
35
|
Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol 2005; 25:4476-87. [PMID: 15899853 PMCID: PMC1140617 DOI: 10.1128/mcb.25.11.4476-4487.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome stability requires a set of RecQ-Top3 DNA helicase-topoisomerase complexes whose sole budding yeast homolog is encoded by SGS1-TOP3. RMI1/NCE4 was identified as a potential intermediate in the SGS1-TOP3 pathway, based on the observation that strains lacking any one of these genes require MUS81 and MMS4 for viability. This idea was tested by confirming that sgs1 and rmi1 mutants display the same spectrum of synthetic lethal interactions, including the requirements for SLX1, SLX4, SLX5, and SLX8, and by demonstrating that rmi1 mus81 synthetic lethality is dependent on homologous recombination. On their own, mutations in RMI1 result in phenotypes that mimic those of sgs1 or top3 strains including slow growth, hyperrecombination, DNA damage sensitivity, and reduced sporulation. And like top3 strains, most rmi1 phenotypes are suppressed by mutations in SGS1. We show that Rmi1 forms a heteromeric complex with Sgs1-Top3 in yeast and that these proteins interact directly in a recombinant system. The Rmi1-Top3 complex is stable in the absence of the Sgs1 helicase, but the loss of either Rmi1 or Top3 in yeast compromises its partner's interaction with Sgs1. Biochemical studies demonstrate that recombinant Rmi1 is a structure-specific DNA binding protein with a preference for cruciform structures. We propose that the DNA binding specificity of Rmi1 plays a role in targeting Sgs1-Top3 to appropriate substrates.
Collapse
Affiliation(s)
- Janet R Mullen
- Department of Molecular Biology and Biochemistry, Rutgers University, CABM, 679 Hoes Ln., Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
36
|
Bessler JB, Zakian VA. The amino terminus of the Saccharomyces cerevisiae DNA helicase Rrm3p modulates protein function altering replication and checkpoint activity. Genetics 2005; 168:1205-18. [PMID: 15579680 PMCID: PMC1448792 DOI: 10.1534/genetics.104.028035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.
Collapse
Affiliation(s)
- Jessica B Bessler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
37
|
Prusty R, Keil RL. SCH9, a putative protein kinase from Saccharomyces cerevisiae, affects HOT1 -stimulated recombination. Mol Genet Genomics 2004; 272:264-74. [PMID: 15349770 DOI: 10.1007/s00438-004-1049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOT1 and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. RAS2( val19), which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and RAS2(val19), the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.
Collapse
Affiliation(s)
- R Prusty
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
38
|
Schmidt KH, Kolodner RD. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol Cell Biol 2004; 24:3213-26. [PMID: 15060145 PMCID: PMC381612 DOI: 10.1128/mcb.24.8.3213-3226.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rrm3 DNA helicase of Saccharomyces cerevisiae interacts with proliferating cell nuclear antigen and is required for replication fork progression through ribosomal DNA repeats and subtelomeric and telomeric DNA. Here, we show that rrm3 srs2 and rrm3 sgs1 mutants, in which two different DNA helicases have been inactivated, exhibit a severe growth defect and undergo frequent cell death. Cells lacking Rrm3 and Srs2 arrest in the G(2)/M phase of the cell cycle with 2N DNA content and frequently contain only a single nucleus. The phenotypes of rrm3 srs2 and rrm3 sgs1 mutants were suppressed by disrupting early steps of homologous recombination. These observations identify Rrm3 as a new member of a network of pathways, involving Sgs1 and Srs2 helicases and Mus81 endonuclease, suggested to act during repair of stalled replication forks.
Collapse
Affiliation(s)
- Kristina H Schmidt
- Ludwig Institute for Cancer Research, University of California-San Diego School of Medicine, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
Torres JZ, Bessler JB, Zakian VA. Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev 2004; 18:498-503. [PMID: 15037547 PMCID: PMC374232 DOI: 10.1101/gad.1154704] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lack of the yeast Rrm3p DNA helicase causes replication defects at multiple sites within ribosomal DNA (rDNA), including at the replication fork barrier (RFB). These defects were unaltered in rrm3 sir2 cells. When the RFB binding Fob1p was deleted, rrm3-generated defects at the RFB were eliminated, but defects at other rDNA sites were not affected. Thus, specific protein-DNA complexes make replication Rrm3p-dependent. Because rrm3-induced increases in recombination and cell cycle length were only partially suppressed in rrm3 fob1 cells, which still required checkpoint and fork restart activities for viability, non-RFB rrm3-induced defects contribute to rDNA fragility and genome instability.
Collapse
Affiliation(s)
- Jorge Z Torres
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
40
|
Torres JZ, Schnakenberg SL, Zakian VA. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 2004; 24:3198-212. [PMID: 15060144 PMCID: PMC381616 DOI: 10.1128/mcb.24.8.3198-3212.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/29/2003] [Accepted: 01/22/2004] [Indexed: 11/20/2022] Open
Abstract
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
Collapse
Affiliation(s)
- Jorge Z Torres
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
41
|
Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. The Saccharomyces cerevisiae Helicase Rrm3p Facilitates Replication Past Nonhistone Protein-DNA Complexes. Mol Cell 2003; 12:1525-36. [PMID: 14690605 DOI: 10.1016/s1097-2765(03)00456-8] [Citation(s) in RCA: 315] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Saccharomyces cerevisiae RRM3 gene encodes a 5' to 3' DNA helicase. While replication of most of the yeast genome was not dependent upon Rrm3p, in its absence, replication forks paused and often broke at an estimated 1400 discrete sites, including tRNA genes, centromeres, inactive replication origins, and transcriptional silencers. These replication defects were associated with activation of the intra-S phase checkpoint. Activation of the checkpoint was critical for viability of rrm3Delta cells, especially at low temperatures. Each site whose replication was affected by Rrm3p is assembled into a nonnucleosomal protein-DNA complex. At tRNA genes and the silent mating type loci, disruption of these complexes eliminated dependence upon Rrm3p. These data indicate that the Rrm3p DNA helicase helps replication forks traverse protein-DNA complexes, naturally occurring impediments that are encountered in each S phase.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
42
|
Schmidt KH, Derry KL, Kolodner RD. Saccharomyces cerevisiae RRM3, a 5' to 3' DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem 2002; 277:45331-7. [PMID: 12239216 DOI: 10.1074/jbc.m207263200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays an essential role in eukaryotic DNA replication, and numerous DNA replication proteins have been found to interact with PCNA through a conserved eight-amino acid motif called the PIP-box. We have searched the genome of the yeast Saccharomyces cerevisiae for open reading frames that encode proteins with putative PIP-boxes and initiated testing of 135 novel candidates for their ability to interact with PCNA-conjugated agarose beads. The first new PCNA-binding protein identified in this manner is the 5' to 3' DNA helicase RRM3. Yeast two-hybrid tests show that N-terminal deletions of RRM3, which remove the PIP-box but leave the helicase motifs intact, abolish the interaction with PCNA. In addition, mutating the two phenylalanine residues in the PIP-box to alanine or aspartic acid reduces binding to PCNA, confirming that the PIP-box in RRM3 is responsible for interaction with PCNA. The results presented here suggest that the RRM3 helicase functions at the replication fork.
Collapse
Affiliation(s)
- Kristina H Schmidt
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093-0660, USA
| | | | | |
Collapse
|
43
|
Kaliraman V, Brill SJ. Role of SGS1 and SLX4 in maintaining rDNA structure in Saccharomyces cerevisiae. Curr Genet 2002; 41:389-400. [PMID: 12228808 PMCID: PMC2804045 DOI: 10.1007/s00294-002-0319-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 06/25/2002] [Accepted: 06/25/2002] [Indexed: 12/12/2022]
Abstract
To address the role of SGS1 in controlling genome stability we previously identified several slx mutants that require SGS1 for viability. Here, we report the isolation and characterization of temperature-sensitive (ts) SGS1 alleles in cells lacking SLX4. At the non-permissive temperature (37 degrees C) sgs1-ts slx4 cells progress through S-phase and arrest growth as large-budded cells with at least a 2C DNA content. Analysis of the integrity of the replicated DNA by pulsed-field gel electrophoresis revealed that chromosome XII (ChrXII) was uniquely altered, as it was unable to enter the gel. This defect was specific to the tandem rDNA repeats on ChrXII and occurred as cells progressed through S-phase at 37 degrees C. Reciprocal-shift experiments revealed that viability and ChrXII migration can be restored by allowing Sgs1 to act between G2/M and the subsequent G1 phase. These results suggest that Sgs1 and Slx4 are not required for bulk DNA synthesis but play redundant roles in maintaining rDNA structure during DNA replication.
Collapse
Affiliation(s)
| | - Steven J. Brill
- Department of Molecular Biology and Biochemistry, 679 Hoes Lane, CABM, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
44
|
Abstract
Most human cancer cells show signs of genome instability, ranging from elevated mutation rates to gross chromosomal rearrangements and alterations in chromosome number. Little is known about the molecular mechanisms that generate this instability or how it is suppressed in normal cells. Recent studies of the yeast Saccharomyces cerevisiae have begun to uncover the extensive and redundant pathways that keep the rate of genome rearrangements at very low levels. These studies, which we review here, have implicated more than 50 genes in the suppression of genome instability, including genes that function in S-phase checkpoints, recombination pathways, and telomere maintenance. Human homologs of several of these genes have well-established roles as tumor suppressors, consistent with the hypothesis that the mechanisms preserving genome stability in yeast are the same mechanisms that go awry in cancer.
Collapse
Affiliation(s)
- Richard D Kolodner
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, CMME3058, 9500 Gilman Drive, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
45
|
Zhou JQ, Qi H, Schulz VP, Mateyak MK, Monson EK, Zakian VA. Schizosaccharomyces pombe pfh1+ encodes an essential 5' to 3' DNA helicase that is a member of the PIF1 subfamily of DNA helicases. Mol Biol Cell 2002; 13:2180-91. [PMID: 12058079 PMCID: PMC117634 DOI: 10.1091/mbc.02-02-0021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae Pif1p DNA helicase is the prototype member of a helicase subfamily conserved from yeast to humans. S. cerevisiae has two PIF1-like genes, PIF1 itself and RRM3, that have roles in maintenance of telomeric, ribosomal, and mitochondrial DNA. Here we describe the isolation and characterization of pfh1+, a Schizosaccharomyces pombe gene that encodes a Pif1-like protein. Pfh1p was the only S. pombe protein with high identity to Saccharomyces Pif1p. Unlike the two S. cerevisiae Pif1 subfamily proteins, the S. pombe Pfh1p was essential. Like Saccharomyces Pif1p, a truncated form of the S. pombe protein had 5' to 3' DNA helicase activity. Point mutations in an invariant lysine residue in the ATP binding pocket of Pfh1p had the same phenotype as deleting pfh1+, demonstrating that the ATPase/helicase activity of Pfh1p was essential. Although mutant spores depleted for Pfh1p proceeded through S phase, they arrested with a terminal cellular phenotype consistent with a postinitiation defect in DNA replication. Telomeric DNA was modestly shortened in the absence of Pfh1p. However, genetic analysis demonstrated that maintenance of telomeric DNA was not the sole essential function of S. pombe Pfh1p.
Collapse
Affiliation(s)
- Jin-Qiu Zhou
- Princeton University, Department of Molecular Biology, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 2002; 16:1383-96. [PMID: 12050116 PMCID: PMC186315 DOI: 10.1101/gad.982902] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In wild-type Saccharomyces cerevisiae, replication forks slowed during their passage through telomeric C(1-3)A/TG(1-3) tracts. This slowing was greatly exacerbated in the absence of RRM3, shown here to encode a 5' to 3' DNA helicase. Rrm3p-dependent fork progression was seen at a modified Chromosome VII-L telomere, at the natural X-bearing Chromosome III-L telomere, and at Y'-bearing telomeres. Loss of Rrm3p also resulted in replication fork pausing at specific sites in subtelomeric DNA, such as at inactive replication origins, and at internal tracts of C(1-3)A/TG(1-3) DNA. The ATPase/helicase activity of Rrm3p was required for its role in telomeric and subtelomeric DNA replication. Because Rrm3p was telomere-associated in vivo, it likely has a direct role in telomere replication.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | | | | | |
Collapse
|
47
|
Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, Manchester JK, Gordon JI, Sinclair DA. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 2002; 277:18881-90. [PMID: 11884393 DOI: 10.1074/jbc.m111773200] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast deprived of nutrients exhibit a marked life span extension that requires the activity of the NAD(+)-dependent histone deacetylase, Sir2p. Here we show that increased dosage of NPT1, encoding a nicotinate phosphoribosyltransferase critical for the NAD(+) salvage pathway, increases Sir2-dependent silencing, stabilizes the rDNA locus, and extends yeast replicative life span by up to 60%. Both NPT1 and SIR2 provide resistance against heat shock, demonstrating that these genes act in a more general manner to promote cell survival. We show that Npt1 and a previously uncharacterized salvage pathway enzyme, Nma2, are both concentrated in the nucleus, indicating that a significant amount of NAD(+) is regenerated in this organelle. Additional copies of the salvage pathway genes, PNC1, NMA1, and NMA2, increase telomeric and rDNA silencing, implying that multiple steps affect the rate of the pathway. Although SIR2-dependent processes are enhanced by additional NPT1, steady-state NAD(+) levels and NAD(+)/NADH ratios remain unaltered. This finding suggests that yeast life span extension may be facilitated by an increase in the availability of NAD(+) to Sir2, although not through a simple increase in steady-state levels. We propose a model in which increased flux through the NAD(+) salvage pathway is responsible for the Sir2-dependent extension of life span.
Collapse
Affiliation(s)
- Rozalyn M Anderson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Merker RJ, Klein HL. hpr1Delta affects ribosomal DNA recombination and cell life span in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:421-9. [PMID: 11756539 PMCID: PMC139738 DOI: 10.1128/mcb.22.2.421-429.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 07/30/2001] [Accepted: 10/08/2001] [Indexed: 11/20/2022] Open
Abstract
Multiple genetic pathways have been shown to regulate life span and aging in the yeast Saccharomyces cerevisiae. Here we show that loss of a component of the RNA polymerase II complex, Hpr1p, results in a decreased life span. Although hpr1Delta mutants have an increased rate of recombination within the ribosomal DNA (rDNA) array, this is not accompanied by an increase in extrachromosomal rDNA circles (ERCs). Analyses of mutants that affect replication of the rDNA array and suppressors that reverse the phenotypes of the hpr1Delta mutant show that the reduced life span is associated with increased genomic instability but not with increased ERC formation. The hpr1Delta mutant acts in a pathway distinct from previously described mutants that reduce life span.
Collapse
Affiliation(s)
- Robert J Merker
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
49
|
Umezu K, Hiraoka M, Mori M, Maki H. Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: retrotransposon Ty1 plays a crucial role in chromosomal rearrangements. Genetics 2002; 160:97-110. [PMID: 11805048 PMCID: PMC1461932 DOI: 10.1093/genetics/160.1.97] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural analysis of aberrant chromosomes is important for our understanding of the molecular mechanisms underlying chromosomal rearrangements. We have identified a number of diploid Saccharomyces cerevisiae clones that have undergone loss of heterozygosity (LOH) leading to functional inactivation of the hemizygous URA3 marker placed on the right arm of chromosome III. Aberrant-sized chromosomes derived from chromosome III were detected in approximately 8% of LOH clones. Here, we have analyzed the structure of the aberrant chromosomes in 45 LOH clones with a PCR-based method that determines the ploidy of a series of loci on chromosome III. The alterations included various deletions and amplifications. Sequencing of the junctions revealed that all the breakpoints had been made within repeat sequences in the yeast genome, namely, MAT-HMR, which resulted in intrachromosomal deletion, and retrotransposon Ty1 elements, which were involved in various translocations. Although the translocations involved different breakpoints on different chromosomes, all breakpoints were exclusively within Ty1 elements. Some of the resulting Ty1 elements left at the breakpoints had a complex construction that indicated the involvement of other Ty1 elements not present at the parental breakpoints. These indicate that Ty1 elements are crucially involved in the generation of chromosomal rearrangements in diploid yeast cells.
Collapse
Affiliation(s)
- Keiko Umezu
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | |
Collapse
|
50
|
Abstract
DNA helicases are required for DNA replication, recombination and repair. Despite a common enzymatic function - the ability to unwind duplex DNA - most helicases share only limited amino acid sequence similarity. Helicases that have significant sequence similarity define a subfamily. It remains unclear, however, how this sequence similarity relates to helicase function. The Saccharomyces cerevisiae Pif1p helicase is the prototype member of a helicase subfamily that is conserved from yeasts to humans. As the two Pif1p subfamily members studied to date affect the same DNA sequences, the amino acid similarity that defines this subfamily might reflect common substrates.
Collapse
Affiliation(s)
- J B Bessler
- Dept of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|