1
|
Shah N, Decker TM, Eick D. Extension of the minimal functional unit of the RNA polymerase II CTD from yeast to mammalian cells. Biol Lett 2019; 15:20190068. [PMID: 31088280 PMCID: PMC6548728 DOI: 10.1098/rsbl.2019.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of 26 and 52 heptad-repeats in yeast and mammals, respectively. Studies in yeast showed that the strong periodicity of the YSPTSPS heptads is dispensable for cell growth and that di-heptads interspersed by spacers can act as minimal functional units (MFUs) to fulfil all essential CTD functions. Here, we show that the MFU of mammalian cells is significantly larger than in yeast and consists of penta-heptads. We further show that the distance between two MFUs is critical for the functions of mammalian CTD. Our study suggests that the general structure of the CTD remained largely unchanged in yeast and mammals; however, besides the number of heptad-repeats, also the length of the MFU significantly increased in mammals.
Collapse
Affiliation(s)
- Nilay Shah
- 1 Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM) , Marchioninistrasse 25, 81377 Munich , Germany
| | - Tim-Michael Decker
- 1 Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM) , Marchioninistrasse 25, 81377 Munich , Germany.,2 Department of Biochemistry, University of Colorado , Boulder, CO 80303 , USA
| | - Dirk Eick
- 1 Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM) , Marchioninistrasse 25, 81377 Munich , Germany
| |
Collapse
|
2
|
Lu F, Gilmour DS. Genetic analysis of the RNA polymerase II CTD in Drosophila. Methods 2019; 159-160:129-137. [PMID: 30684537 PMCID: PMC6589110 DOI: 10.1016/j.ymeth.2019.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023] Open
Abstract
The Carboxy-terminal Domain (CTD) of RNA polymerase II (Pol II) plays essential roles in regulating gene expression in eukaryotes. Here, we describe multiple genetic approaches for studying the CTD in Drosophila that complement pre-existing molecular analyses of the Pol II CTD in other experimental models. These approaches will allow one to assess the effects of any CTD mutations in a developmentally complex organism. The approaches discussed in this work can in principle, be applied to analyze other transcription components in eukaryotes.
Collapse
Affiliation(s)
- Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
|
4
|
Portz B, Lu F, Gibbs EB, Mayfield JE, Rachel Mehaffey M, Zhang YJ, Brodbelt JS, Showalter SA, Gilmour DS. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15231. [PMID: 28497792 PMCID: PMC5437306 DOI: 10.1038/ncomms15231] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.
Collapse
Affiliation(s)
- Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,The Huck Institutes of Life Sciences. The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua E Mayfield
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
5
|
Tian N, Li J, Shi J, Sui G. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform. Int J Mol Sci 2017; 18:ijms18030191. [PMID: 28257090 PMCID: PMC5372486 DOI: 10.3390/ijms18030191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1) pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms.
Collapse
Affiliation(s)
- Na Tian
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Jialiang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
6
|
Ke X, McKnight RA, Gracey Maniar LE, Sun Y, Callaway CW, Majnik A, Lane RH, Cohen SS. IUGR increases chromatin-remodeling factor Brg1 expression and binding to GR exon 1.7 promoter in newborn male rat hippocampus. Am J Physiol Regul Integr Comp Physiol 2015; 309:R119-27. [PMID: 25972460 DOI: 10.1152/ajpregu.00495.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk for neurodevelopment delay and neuroendocrine reprogramming in both humans and rats. Neuroendocrine reprogramming involves the glucocorticoid receptor (GR) gene that is epigenetically regulated in the hippocampus. Using a well-characterized rodent model, we have previously shown that IUGR increases GR exon 1.7 mRNA variant and total GR expressions in male rat pup hippocampus. Epigenetic regulation of GR transcription may involve chromatin remodeling of the GR gene. A key chromatin remodeler is Brahma-related gene-1(Brg1), a member of the ATP-dependent SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Brg1 regulates gene expression by affecting nucleosome repositioning and recruiting transcriptional components to target promoters. We hypothesized that IUGR would increase hippocampal Brg1 expression and binding to GR exon 1.7 promoter, as well as alter nucleosome positioning over GR promoters in newborn male pups. Further, we hypothesized that IUGR would lead to accumulation of specificity protein 1 (Sp1) and RNA pol II at GR exon 1.7 promoter. Indeed, we found that IUGR increased Brg1 expression and binding to GR exon 1.7 promoter. We also found that increased Brg1 binding to GR exon 1.7 promoter was associated with accumulation of Sp1 and RNA pol II carboxy terminal domain pSer-5 (a marker of active transcription). Furthermore, the transcription start site of GR exon 1.7 was located within a nucleosome-depleted region. We speculate that changes in hippocampal Brg1 expression mediate GR expression and subsequently trigger neuroendocrine reprogramming in male IUGR rats.
Collapse
Affiliation(s)
- Xingrao Ke
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Robert A McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Ying Sun
- Bioinformatics-Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Christopher W Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Amber Majnik
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan S Cohen
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
7
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
8
|
Number of nuclear divisions in the Drosophila blastoderm controlled by onset of zygotic transcription. Curr Biol 2013; 23:133-8. [PMID: 23290555 DOI: 10.1016/j.cub.2012.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/25/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Abstract
The cell number of the early Drosophila embryo is determined by exactly 13 rounds of synchronous nuclear divisions, allowing cellularization and formation of the embryonic epithelium. The pause in G2 in cycle 14 is controlled by multiple pathways, such as activation of DNA repair checkpoint, progression through S phase, and inhibitory phosphorylation of Cdk1, involving the genes grapes, mei41, and wee1. In addition, degradation of maternal RNAs and zygotic gene expression are involved. The zinc finger Vielfältig (Vfl) controls expression of many early zygotic genes, including the mitotic inhibitor frühstart. The functional relationship of these pathways and the mechanism for triggering the cell-cycle pause have remained unclear. Here, we show that a novel single-nucleotide mutation in the 3' UTR of the RNPII215 gene leads to a reduced number of nuclear divisions that is accompanied by premature transcription of early zygotic genes and cellularization. The reduced number of nuclear divisions in mutant embryos depends on the transcription factor Vfl and on zygotic gene expression, but not on grapes, the mitotic inhibitor Frühstart, and the nucleocytoplasmic ratio. We propose that activation of zygotic gene expression is the trigger that determines the timely and concerted cell-cycle pause and cellularization.
Collapse
|
9
|
Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:308-24. [PMID: 12213660 DOI: 10.1016/s0167-4781(02)00460-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (RNAP II) and its associated factors interact with a diverse collection of nuclear proteins during the course of precursor messenger RNA synthesis. This growing list of known contacts provides compelling evidence for the existence of large multifunctional complexes, a.k.a. transcriptosomes, within which the biosynthesis of mature mRNAs is coordinated. Recent studies have demonstrated that the unique carboxy-terminal domain (CTD) of the largest subunit of RNAP II plays an important role in recruiting many of these activities to the transcriptional machinery. Throughout the transcription cycle the CTD undergoes a variety of covalent and structural modifications which can, in turn, modulate the interactions and functions of processing factors during transcription initiation, elongation and termination. New evidence suggests that the possibility that interaction of some of these processing factors with the polymerase can affect its elongation rate. Besides the CTD, proteins involved in pre-mRNA processing can interact with general transcription factors (GTFs) and transcriptional activators, which associate with polymerase at promoters. This suggests a mechanism for the recruitment of specific processing activities to different transcription units. This harmonic integration of transcriptional and post-transcriptional activities, many of which once were considered to be functionally isolated within the cell, supports a general model for the coordination of gene expression by RNAP II within the nucleus.
Collapse
Affiliation(s)
- Kenneth James Howe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271:27176-83. [PMID: 8900211 DOI: 10.1074/jbc.271.43.27176] [Citation(s) in RCA: 517] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N. F., and Price, D. H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
Collapse
Affiliation(s)
- N F Marshall
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|