1
|
Mutagenicity in haploid yeast meiosis resulting from repair of DSBs by the sister chromatid. Curr Genet 2021; 67:799-806. [PMID: 33966123 DOI: 10.1007/s00294-021-01189-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Mutations in diploid budding yeast occur in meiosis at higher frequencies than in cells grown vegetatively. Such meiotic mutations are thought to result from the repair of double-strand breaks (DSBs) in meiosis, during the process of recombination. Here, we report studies of mutagenicity in haploid strains that may undergo meiosis due to the expression of both mating-type alleles, MATa and MATα. We measure the rate of mutagenicity in the reporter gene CAN1, and find it to be fivefold higher than in mitotic cells, as determined by fluctuation analysis. This enhanced meiotic mutagenicity is shown to depend on the presence of SPO11, the gene responsible for meiotic DSBs. Mutations in haploid meiosis must result from repair of the DSBs through interaction with the sister chromatid, rather than with non-sister chromatids as in diploids. Thus, mutations in diploid meiosis that are not ostensibly associated with recombination events can be explained by sister-chromatid repair. The spectrum of meiotic mutations revealed by Sanger sequencing is similar in haploid and in diploid meiosis. Compared to mitotic mutations in CAN1, long Indels are more frequent among meiotic mutations. Both, meiotic and mitotic mutations are more common at G/C sites than at A/T, in spite of an opposite bias in the target reporter gene. We conclude that sister-chromatid repair of DSBs is a major source of mutagenicity in meiosis.
Collapse
|
2
|
Cerón-Romero MA, Nwaka E, Owoade Z, Katz LA. PhyloChromoMap, a Tool for Mapping Phylogenomic History along Chromosomes, Reveals the Dynamic Nature of Karyotype Evolution in Plasmodium falciparum. Genome Biol Evol 2018; 10:553-561. [PMID: 29365145 PMCID: PMC5800058 DOI: 10.1093/gbe/evy017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
The genome of Plasmodium falciparum, the causative agent of malaria in Africa, has been extensively studied since it was first fully sequenced in 2002. However, many open questions remain, including understanding the chromosomal context of molecular evolutionary changes (e.g., relationship between chromosome map and phylogenetic conservation, patterns of gene duplication, and patterns of selection). Here, we present PhyloChromoMap, a method that generates a phylogenomic map of chromosomes from a custom-built bioinformatics pipeline. Using P. falciparum 3D7 as a model, we analyze 2,116 genes with homologs in up to 941 diverse eukaryotic, bacterial and archaeal lineages. We estimate the level of conservation along chromosomes based on conservation across clades, and identify “young” regions (i.e., those with recent or fast evolving genes) that are enriched in subtelomeric regions as compared with internal regions. We also demonstrate that patterns of molecular evolution for paralogous genes differ significantly depending on their location as younger paralogs tend to be found in subtelomeric regions whereas older paralogs are enriched in internal regions. Combining these observations with analyses of synteny, we demonstrate that subtelomeric regions are actively shuffled among chromosome ends, which is consistent with the hypothesis that these regions are prone to ectopic recombination. We also assess patterns of selection by comparing dN/dS ratios of gene family members in subtelomeric versus internal regions, and we include the important antigenic gene family var. These analyses illustrate the highly dynamic nature of the karyotype of P. falciparum, and provide a method for exploring genome dynamics in other lineages.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Esther Nwaka
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Zuliat Owoade
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
3
|
Cifuentes M, Rivard M, Pereira L, Chelysheva L, Mercier R. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers. PLoS One 2013; 8:e72431. [PMID: 23951324 PMCID: PMC3737152 DOI: 10.1371/journal.pone.0072431] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/09/2013] [Indexed: 12/05/2022] Open
Abstract
Two hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype) in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.
Collapse
Affiliation(s)
- Marta Cifuentes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Maud Rivard
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Lucie Pereira
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Raphael Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| |
Collapse
|
4
|
Pradillo M, Santos JL. The template choice decision in meiosis: is the sister important? Chromosoma 2011; 120:447-54. [PMID: 21826413 DOI: 10.1007/s00412-011-0336-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/30/2022]
Abstract
Recombination between homologous chromosomes is crucial to ensure their proper segregation during meiosis. This is achieved by regulating the choice of recombination template. In mitotic cells, double-strand break repair with the sister chromatid appears to be preferred, whereas interhomolog recombination is favoured during meiosis. However, in the last year, several studies in yeast have shown the importance of the meiotic recombination between sister chromatids. Although this thinking seems to be new, evidences for sister chromatid exchange during meiosis were obtained more than 50 years ago in non-model organisms. In this mini-review, we comment briefly on the most recent advances in this hot topic and also describe observations which suggest the existence of inter-sister repair during meiotic recombination. For instance, the behaviour of mammalian XY bivalents and that of trivalents in heterozygotes for chromosomal rearrangements are cited as examples. The "rediscovering" of the requirement for the sister template, although it seems to occur at a low frequency, will probably prompt further investigations in organisms other than yeast to understand the complexity of the partner choice during meiosis.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Universidad Complutense de Madrid, Spain.
| | | |
Collapse
|
5
|
Lukaszewicz A, Howard-Till RA, Novatchkova M, Mochizuki K, Loidl J. MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma 2010; 119:505-18. [PMID: 20422424 DOI: 10.1007/s00412-010-0274-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Programmed DNA double-strand breaks (DSBs) are generated during meiosis to initiate homologous recombination. Various aspects of DSB formation, signaling, and repair are accomplished or governed by Mre11, a component of the MRN/MRX complex, partially in cooperation with Com1/Sae2/CtIP. We used Tetrahymena to study evolutionarily conserved and changed functions of Mre11 and Com1. There is a difference between organisms with respect to the dependency of meiotic DSB formation on Mre11. By cytology and an electrophoresis-based assay for DSBs, we found that in Tetrahymena Mre11p is not required for the formation and ATR-dependent signaling of DSBs. Its dispensability is also reflected by wild-type-like DSB-dependent reorganization of the meiotic nucleus and by the phosphorylation of H2A.X in mre11∆ mutant. However, mre11∆ and com1∆ mutants are unable to repair DSBs, and chromosome pairing is reduced. It is concluded that, while MRE11 has no universal role in DNA damage signaling, its requirement for DSB repair is conserved between evolutionarily distant organisms. Moreover, reduced chromosome pairing in repair-deficient mutants reveals the existence of two complementing pairing processes, one by the rough parallel arrangement of chromosomes imposed by the tubular shape of the meiotic nucleus and the other by repair-dependent precise sequence matching.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Dr. Bohr Gasse 1, Vienna, Austria
| | | | | | | | | |
Collapse
|
6
|
van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, Brisse S, Struelens M. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007; 13 Suppl 3:1-46. [PMID: 17716294 DOI: 10.1111/j.1469-0691.2007.01786.x] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For bacterial typing to be useful, the development, validation and appropriate application of typing methods must follow unified criteria. Over a decade ago, ESGEM, the ESCMID (Europen Society for Clinical Microbiology and Infectious Diseases) Study Group on Epidemiological Markers, produced guidelines for optimal use and quality assessment of the then most frequently used typing procedures. We present here an update of these guidelines, taking into account the spectacular increase in the number and quality of typing methods made available over the past decade. Newer and older, phenotypic and genotypic methods for typing of all clinically relevant bacterial species are described according to their principles, advantages and disadvantages. Criteria for their evaluation and application and the interpretation of their results are proposed. Finally, the issues of reporting, standardisation, quality assessment and international networks are discussed. It must be emphasised that typing results can never stand alone and need to be interpreted in the context of all available epidemiological, clinical and demographical data relating to the infectious disease under investigation. A strategic effort on the part of all workers in the field is thus mandatory to combat emerging infectious diseases, as is financial support from national and international granting bodies and health authorities.
Collapse
Affiliation(s)
- A van Belkum
- Erasmus MC, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Egli D, Hafen E, Schaffner W. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster. Genome Res 2004; 14:1382-93. [PMID: 15197166 PMCID: PMC442155 DOI: 10.1101/gr.2279804] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Homologous recombination (HR) is an indispensable tool to modify the genome of yeast and mammals. More recently HR is also being used for gene targeting in Drosophila. Here we show that HR can be used efficiently to engineer chromosomal rearrangements such as pericentric and paracentric inversions and translocations in Drosophila. Two chromosomal double-strand breaks (DSBs), introduced by the rare-cutting I-SceI endonuclease on two different mobile elements sharing homologous sequences, are sufficient to promote rearrangements at a frequency of 1% to 4%. Such rearrangements, once generated by HR, can be reverted by Cre recombinase. However, Cre-mediated recombination efficiency drops with increasing distance between recombination sites, unlike HR. We therefore speculate that physical constraints on chromosomal movement are modulated during DSB repair, to facilitate the homology search throughout the genome.
Collapse
Affiliation(s)
- Dieter Egli
- Institut für Molekularbiologie, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
8
|
Trelles-Sticken E, Loidl J, Scherthan H. Increased ploidy and KAR3 and SIR3 disruption alter the dynamics of meiotic chromosomes and telomeres. J Cell Sci 2003; 116:2431-42. [PMID: 12734403 DOI: 10.1242/jcs.00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the sequence of chromosomal events during meiotic prophase in haploid, diploid and autotetraploid SK1 strains of Saccharomyces cerevisiae. Using molecular cytology, we found that meiosis-specific nuclear topology (i.e. dissolution of centromere clustering, bouquet formation and meiotic divisions) are significantly delayed in polyploid SK1 meiosis. Thus, and in contrast to the situation in plants, an increase in ploidy extends prophase I in budding yeast. Moreover, we found that bouquet formation also occurs in haploid and diploid SK1 meiosis deficient in the telomeric heterochromatin protein Sir3p. Diploid sir3Delta SK1 meiosis showed pleiotropic defects such as delayed centromere cluster resolution in a proportion of cells and impeded downstream events (i.e. bouquet formation, homologue pairing and meiotic divisions). Meiotic telomere clustering occurred in diploid and haploid sir3Delta strains. Using the haploid system, we further show that a bouquet forms at the kar3Delta SPB. Comparison of the expression of meiosis-specific Ndj1p-HA and Zip1p in haploid control and kar3Delta time courses revealed that fewer cells enter the meiotic cycle in absence of Kar3p. Elevated frequencies of bouquets in kar3Delta haploid meiosis suggest a role for Kar3p in regulation of telomere dynamics.
Collapse
Affiliation(s)
- Edgar Trelles-Sticken
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | |
Collapse
|
9
|
Loidl J. Chromosomes of the budding yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:141-96. [PMID: 12503849 DOI: 10.1016/s0074-7696(02)22014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitotic chromosomes of the baker's yeast, Saccharomyces cerevisiae, cannot be visualized by standard cytological methods. Only the study of meiotic bivalents and the synaptonemal complex and the visualization of chromosome-sized DNA molecules on pulsed-field gels have provided some insight into chromosome structure and behavior. More recently, advanced techniques such as in situ hybridization, the illumination of chromosomal loci by GFP-tagged DNA-binding proteins, and immunostaining of chromosomal proteins have promoted our knowledge about yeast chromosomes. These novel cytological approaches in combination with the yeast's advanced biochemistry and genetics have produced a great wealth of information on the interplay between molecular and cytological processes and have strengthened the role of yeast as a leading cell biological model organism. Recent cytological studies have revealed much about the chromosomal organization in interphase nuclei and have contributed significantly to our current understanding of chromosome condensation, sister chromatid cohesion, and centromere orientation in mitosis. Moreover, important details about the biochemistry and ultrastructure of meiotic pairing and recombination have been revealed by combined cytological and molecular approaches. This article covers several aspects of yeast chromosome structure, including their organization within interphase nuclei and their behavior during mitosis and meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
10
|
Lorenz A, Fuchs J, Trelles-Sticken E, Scherthan H, Loidl J. Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae x S. paradoxus hybrids. J Cell Sci 2002; 115:3829-35. [PMID: 12235293 DOI: 10.1242/jcs.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the genomes of Saccharomyces cerevisiae and S. paradoxus are sufficiently divergent to allow their differential labeling by genomic in situ hybridisation (GISH). The cytological discrimination of the genomes allowed us to study the merging of the two genomes during hybrid mating. GISH revealed that in hybrid nuclei the two genomes are intermixed. In hybrid meiosis, extensive intraspectific nonhomologous pairing takes place. GISH on chromosome addition and substitution strains (with chromosomes of S. paradoxus added to or replacing the homoeologous chromosome of an otherwise S. cerevisiae background) was used to delineate individual chromosomes at interphase and to examine various aspects of chromosome structure and arrangement.
Collapse
Affiliation(s)
- Alexander Lorenz
- Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- M E Dresser
- Oklahoma Medical Research Foundation, Core Facility for Imaging, Program in Mol. and Cell Biology, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Thompson DA, Stahl FW. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 1999; 153:621-41. [PMID: 10511544 PMCID: PMC1460802 DOI: 10.1093/genetics/153.2.621] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.
Collapse
Affiliation(s)
- D A Thompson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| | | |
Collapse
|
13
|
Santos JL. The relationship between synapsis and recombination: two different views. Heredity (Edinb) 1999. [DOI: 10.1038/sj.hdy.6884870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
14
|
Ganley AR, Scott B. Extraordinary ribosomal spacer length heterogeneity in a neotyphodium endophyte hybrid: implications for concerted evolution. Genetics 1998; 150:1625-37. [PMID: 9832538 PMCID: PMC1460432 DOI: 10.1093/genetics/150.4.1625] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An extraordinary level of length heterogeneity was found in the ribosomal DNA (rDNA) of an asexual hybrid Neotyphodium grass endophyte, isolate Lp1. This hybrid Neotyphodium endophyte is an interspecific hybrid between two grass endophytes, Neotyphodium lolii, and a sexual form, Epichlöe typhina, and the length heterogeneity was not found in either of these progenitor species. The length heterogeneity in the hybrid is localized to the intergenic spacer (IGS) and is the result of copy-number variation of a tandemly repeated subrepeat class within the IGS, the 111-/119-bp subrepeats. Copy number variation of this subrepeat class appears to be a consequence of mitotic unequal crossing over that occurs between these subrepeats. This implies that unequal crossing over plays a role in the concerted evolution of the whole rDNA. Changes in the pattern of IGS length variants occurred in just two rounds of single-spore purification. Analysis of the IGS length heterogeneity revealed features that are unexpected in a simple model of unequal crossing over. Potential refinements of the molecular details of unequal crossing over are presented, and we also discuss evidence for a combination of homogenization mechanisms that drive the concerted evolution of the Lp1 rDNA.
Collapse
Affiliation(s)
- A R Ganley
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
15
|
Affiliation(s)
- G S Roeder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103 USA.
| |
Collapse
|