1
|
Yuan Z, Zeng W, Gong Q, Miao H, Li S. Promotion mechanisms of static magnetic field on sulfide-based partial autotrophic denitrification: Metabolic intermediates, electron behavior, oxidative stress, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125571. [PMID: 40311356 DOI: 10.1016/j.jenvman.2025.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Sulfide-based Partial Autotrophic Denitrification (SPAD) coupled with anammox is a promising technology for simultaneous sulfide and nitrogen removal. Static magnetic field (SMF) has been recognized to facilitate biological denitrification processes, but the underlying mechanisms remain largely unexplored. In this study, the performance was investigated in long-term operation of SPAD process under SMF, aiming at exploring the potential of SMF to enhance the SPAD process. The results showed that the SMF reactor (R2) achieved 90.14 % nitrite accumulation, while it was 70.54 % in the control reactor (R1). SMF facilitated electron production, transfer and consumption, and increased the activity of Complex Ⅰ, Complex Ⅲ, Cyt.c, sulfide oxidase and nitrate reductase. In addition, SMF alleviated oxidative stress by reducing reactive oxygen species (ROS) production and promoting up-regulation of antioxidant defense systems. Real-time quantitative PCR and reverse transcription PCR combined with high-throughput sequencing analysis showed that SMF promoted the conversion of the dominant genus SOBII (Sulfurimonas) to SOBI (Thiobacillus), and the relative abundance of Thiobacillus in the R2 was 67.64 %, higher than that in the R1 (61.90 %). The study provides a new approach to achieve stable nitrite accumulation by the SPAD process as well as presents new insights into the role of SMF on microorganisms.
Collapse
Affiliation(s)
- Zhongling Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Haohao Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Shuangshuang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
López-Díaz B, Mercado-Sáenz S, Burgos-Molina AM, González-Vidal A, Sendra-Portero F, Ruiz-Gómez MJ. Genomic DNA damage induced by co-exposure to DNA damaging agents and pulsed magnetic field. Int J Radiat Biol 2022; 99:853-865. [PMID: 36069754 DOI: 10.1080/09553002.2022.2121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE Many articles describe the effects of extremely low-frequency magnetic fields (MF) on DNA damage induction. However, the mechanism of MF interaction with living matter is not yet known with certainty. Some works suggest that MF could induce an increase in the efficacy of Reactive Oxygen Species (ROS) production. This work investigates whether pulsed MF exposure produces alterations in genomic DNA damage induced by co-exposure to DNA damaging agents (bleomycin and methyl methanesulfonate (MMS)). MATERIALS AND METHODS Genomic DNA, prepared from S. cerevisiae cultures, was exposed to pulsed MF (1.5 mT peak, 25 Hz) and MMS (0-1%) (15-60 minutes), and to MF and bleomycin (0-0.6 IU/ml) (24-72 hours). The damage induced to DNA was evaluated by electrophoresis and image analysis. RESULTS Pulsed MF induced an increment in the level of DNA damage produced by MMS and bleomycin in all groups at the exposure conditions assayed. CONCLUSIONS Pulsed MF could modulate the cytotoxic action of MMS and bleomycin. The observed effect could be the result of a multifactorial process influenced by the type of agent that damages DNA, the dose, and the duration of the exposure to the pulsed MF.
Collapse
Affiliation(s)
- Beatriz López-Díaz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
3
|
Mercado-Sáenz S, López-Díaz B, Burgos-Molina AM, Sendra-Portero F, González-Vidal A, Ruiz-Gómez MJ. Exposure of S. cerevisiae to pulsed magnetic field during chronological aging could induce genomic DNA damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1756-1767. [PMID: 33797308 DOI: 10.1080/09603123.2021.1910212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This study evaluates the DNA damage induced by pulsed magnetic field (MF) on S. cerevisiae cells exposed during chronological aging. Samples were exposed to 25 Hz pulsed MF (1.5mT, 8 h/day) while cells were aging chronologically. Clonogenic drop test was used to study cellular survival and the mutation frequency was evaluated by scoring the spontaneous revertant mutants. DNA damage analysis was performed after aging by electrophoresis and image analysis. Yeast cells aged during 40 days of exposure showing that pulsed MF exposure induced a premature aging. In addition, a gradual increase in spontaneous mutants was found in pulsed MF samples in relation to unexposed controls. An increase in DNA degradation, over the background level in relation to controls, was observed at the end of the exposure period. In conclusion, exposure of S. cerevisiae cells to pulsed MF during chronological aging could induce genomic DNA damage.
Collapse
Affiliation(s)
- Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Beatriz López-Díaz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
4
|
Mercado-Sáenz S, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019; 95:1588-1596. [DOI: 10.1080/09553002.2019.1643050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Silvia Mercado-Sáenz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Antonio M. Burgos-Molina
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Beatriz López-Díaz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Miguel J. Ruiz-Gómez
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Kthiri A, Hidouri S, Wiem T, Jeridi R, Sheehan D, Landouls A. Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS One 2019; 14:e0209843. [PMID: 30608963 PMCID: PMC6319737 DOI: 10.1371/journal.pone.0209843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Exposure to static magnetic fields (SMF) can cause changes in microorganism metabolism altering key subcellular functions. The purpose of this study was to investigate whether an applied SMF could induce biological effects on growth of Saccharomyces cerevisiae, and then to probe biochemical and bio-molecular responses. We found a decrease in growth and viability under SMF (250mT) after 6h with a significant decrease in colony forming units followed by an increase between 6 h and 9 h. Moreover, measurements of antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase) demonstrated a particular profile suggesting oxidative stress. For instance, SOD and catalase activities increased in magnetized cultures after 9 h compared with unexposed samples. However, SMF exposure caused a decrease in glutathione peroxidase activity. Finally, SMF caused an increase in MDA levels as well as the content of protein carbonyl groups after 6 and 9 h of exposure.
Collapse
Affiliation(s)
- Ameni Kthiri
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Slah Hidouri
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - Tahri Wiem
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - Roua Jeridi
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - David Sheehan
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
- Dept of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- * E-mail:
| | - Ahmed Landouls
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| |
Collapse
|
6
|
Inactivation of RAD52 and HDF1 DNA repair genes leads to premature chronological aging and cellular instability. J Biosci 2018; 42:219-230. [PMID: 28569246 DOI: 10.1007/s12038-017-9684-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study aims to investigate the role of radiation sensitive 52 (RAD52) and high-affinity DNA binding factor 1 (HDF1) DNA repair genes on the life span of budding yeasts during chronological aging. Wild type (wt) and rad52, hdf1, and rad52 hdf1 mutant Saccharomyces cerevisiae strains were used. Chronological aging and survival assays were studied by clonogenic assay and drop test. DNA damage was analyzed by electrophoresis after phenol extraction. Mutant analysis, colony forming units and the index of respiratory competence were studied by growing on dextrose and glycerol plates as a carbon source. Rad52 and rad52 hdf1 mutants showed a gradual decrease in surviving fraction in relation to wt and hdf1 mutant during aging. Genomic DNA was spontaneously more degraded during aging, mainly in rad52 mutants. This strain showed an increased percentage of revertant colonies. Moreover, all mutants showed a decrease in the index of respiratory competence during aging. The inactivation of RAD52 leads to premature chronological aging with an increase in DNA degradation and mutation frequency. In addition, RAD52 and HDF1 contribute to maintain the metabolic state, in a different way, during chronological aging. The results obtained could have important implications in the chronobiology of aging.
Collapse
|
7
|
The proteasome factor Bag101 binds to Rad22 and suppresses homologous recombination. Sci Rep 2014; 3:2022. [PMID: 23779158 PMCID: PMC3685826 DOI: 10.1038/srep02022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/31/2013] [Indexed: 11/08/2022] Open
Abstract
Although RAD52 plays a critical role in the initiation of homologous recombination (HR) by facilitating the replacement of RPA with RAD51, the mechanism controlling RAD52 remains elusive. Here, we show that Bag101, a factor implicated in proteasome functioning, regulates RAD52 protein levels and subsequent HR. LC-MS/MS analysis identified Bag101 which binds to Rad22, the fission yeast homologue of RAD52. Bag101 reduced HR frequency through its overexpression and conversely, HR frequencies were enhanced when it was deleted. Consistent with this observation, Rad22 protein levels was reduced in cells where bag101 was overexpressed even when Rad22 transcription was up-regulated, suggesting the operation of proteasome-mediated Rad22 degradation. Indeed, Rad22 protein levels were stabilized in proteasome mutants. Rad22 physically interacted with the BAG domain of Bag101, and a lack of this domain enhanced HR frequency. Similarly, radiation exposure triggered the dissociation of these proteins so that Rad22 was stabilized and able to enhance HR.
Collapse
|
8
|
Illner D, Scherthan H. Ionizing irradiation-induced radical stress stalls live meiotic chromosome movements by altering the actin cytoskeleton. Proc Natl Acad Sci U S A 2013; 110:16027-32. [PMID: 24046368 PMCID: PMC3791724 DOI: 10.1073/pnas.1306324110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiosis generates haploid cells or spores for sexual reproduction. As a prelude to haploidization, homologous chromosomes pair and recombine to undergo segregation during the first meiotic division. During the entire meiotic prophase of the yeast Saccharomyces cerevisiae, chromosomes perform rapid movements that are suspected to contribute to the regulation of recombination. Here, we investigated the impact of ionizing radiation (IR) on movements of GFP-tagged bivalents in live pachytene cells. We find that exposure of sporulating cultures with >40 Gy (4-krad) X-rays stalls pachytene chromosome movements. This identifies a previously undescribed acute radiation response in yeast meiosis, which contrasts with its reported radioresistance of up to 1,000 Gy in survival assays. A modified 3'-end labeling assay disclosed IR-induced dsDNA breaks (DSBs) in pachytene cells at a linear dose relationship of one IR-induced DSB per cell per 5 Gy. Dihydroethidium staining revealed formation of reactive oxygen species (ROS) in irradiated cells. Immobility of fuzzy-appearing irradiated bivalents was rescued by addition of radical scavengers. Hydrogen peroxide-induced ROS did reduce bivalent mobility similar to 40 Gy X IR, while they failed to induce DSBs. IR- and H2O2-induced ROS were found to decompose actin cables that are driving meiotic chromosome mobility, an effect that could be rescued by antioxidant treatment. Hence, it appears that the meiotic actin cytoskeleton is a radical-sensitive system that inhibits bivalent movements in response to IR- and oxidant-induced ROS. This may be important to prevent motility-driven unfavorable chromosome interactions when meiotic recombination has to proceed in genotoxic environments.
Collapse
Affiliation(s)
- Doris Illner
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, D-80937 Munich, Germany; and
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, D-80937 Munich, Germany; and
- Max Planck Institut für Molekulare Genetik, D-14195 Berlin, Germany
| |
Collapse
|
9
|
López-Díaz B, Mercado-Sáenz S, Martínez-Morillo M, Sendra-Portero F, Ruiz-Gómez MJ. Long-term exposure to a pulsed magnetic field (1.5 mT, 25 Hz) increases genomic DNA spontaneous degradation. Electromagn Biol Med 2013; 33:228-35. [DOI: 10.3109/15368378.2013.802245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Beatriz López-Díaz
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Silvia Mercado-Sáenz
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Manuel Martínez-Morillo
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Francisco Sendra-Portero
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Miguel J. Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| |
Collapse
|
10
|
Ruiz-Gómez MJ, Ristori-Bogajo E, Prieto-Barcia MI, Martínez-Morillo M. No Evidence of Cellular Alterations by MilliTesla-Level Static and 50 Hz Magnetic Fields onS. cerevisiae. Electromagn Biol Med 2010; 29:154-64. [DOI: 10.3109/07435800.2010.505158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Ruiz-Gómez MJ, Sendra-Portero F, Martínez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int J Radiat Biol 2010; 86:602-11. [PMID: 20545572 DOI: 10.3109/09553001003734519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate whether extremely-low frequency magnetic field (MF) exposure produce alterations in the growth, cell cycle, survival and DNA damage of wild type (wt) and mutant yeast strains. MATERIALS AND METHODS wt and high affinity DNA binding factor 1 (hdf1), radiation sensitive 52 (rad52), rad52 hdf1 mutant Saccharomyces cerevisiae strains were exposed to 2.45 mT, sinusoidal 50 Hz MF for 96 h. MF was generated by a pair of Helmholtz coils. During this time the growth was monitored by measuring the optical density at 600 nm and cell cycle evolution were analysed by microscopic morphological analysis. Then, yeast survival was assayed by the drop test and DNA was extracted and electrophoresed. RESULTS A significant increase in the growth was observed for rad52 strain (P = 0.005, Analysis of Variance [ANOVA]) and close to significance for rad52 hdf1 strain (P = 0.069, ANOVA). In addition, the surviving fraction values obtained for MF-exposed samples were in all cases less than for the controls, being the P value obtained for the whole set of MF-treated strains close to significance (P = 0.066, Student's t-test). In contrast, the cell cycle evolution and the DNA pattern obtained for wt and the mutant strains were not altered after exposure to MF. CONCLUSIONS The data presented in the current report show that the applied MF (2.45 mT, sinusoidal 50 Hz, 96 h) induces alterations in the growth and survival of S. cerevisiae strains deficient in DNA strand breaks repair. In contrast, the MF treatment does not induce alterations in the cell cycle and does not cause DNA damage.
Collapse
Affiliation(s)
- Miguel J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | | | | |
Collapse
|
12
|
Ruiz-Gómez MJ, Merino-Moyano MD, Cebrián-Martín MG, Prieto-Barcia MI, Martínez-Morillo M. No effect of 50 Hz 2.45 mT magnetic field on the potency of cisplatin, mitomycin C, and methotrexate in S. cerevisiae. Electromagn Biol Med 2009; 27:289-97. [PMID: 18821204 DOI: 10.1080/15368370802277740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Drug resistance is an obstacle for chemotherapy success. Because of this, this work aims to improve the cell killing effect of antineoplastic drugs by magnetic field (MF) co-exposure. S. cerevisiae cells were exposed to 2.45 mT, sinusoidal 50 Hz MF, during 48 h, and the drugs cisplatin (cisPt), mitomycin C (MMC), or methotrexate (MTX); 100 and 1,000 microg/ml. Survival was assayed by the drop test. The results showed that MF exposures do not induce alterations in the potency of cisPt, MMC, and MTX on these cells in relation to untreated controls. In addition, a strong correlation between temperature and potency of cisPt was found, which contribute to the establishment of the importance of an exhaustive control of temperature in experiments carried out with temperature sensitive antineoplastic agents in co-exposure with MF; avoiding differences between MF-exposed samples and unexposed controls and contributing to the performance of experiments under well-defined and controlled conditions.
Collapse
Affiliation(s)
- M J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | | | | | | | | |
Collapse
|
13
|
Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 2008; 105:11845-50. [PMID: 18701715 DOI: 10.1073/pnas.0804529105] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation is an established source of chromosome aberrations (CAs). Although double-strand breaks (DSBs) are implicated in radiation-induced and other CAs, the underlying mechanisms are poorly understood. Here, we show that, although the vast majority of randomly induced DSBs in G(2) diploid yeast cells are repaired efficiently through homologous recombination (HR) between sister chromatids or homologous chromosomes, approximately 2% of all DSBs give rise to CAs. Complete molecular analysis of the genome revealed that nearly all of the CAs resulted from HR between nonallelic repetitive elements, primarily Ty retrotransposons. Nonhomologous end-joining (NHEJ) accounted for few, if any, of the CAs. We conclude that only those DSBs that fall at the 3-5% of the genome composed of repetitive DNA elements are efficient at generating rearrangements with dispersed small repeats across the genome, whereas DSBs in unique sequences are confined to recombinational repair between the large regions of homology contained in sister chromatids or homologous chromosomes. Because repeat-associated DSBs can efficiently lead to CAs and reshape the genome, they could be a rich source of evolutionary change.
Collapse
|
14
|
HDF1 and RAD17 genes are involved in DNA double-strand break repair in stationary phase Saccharomyces cerevisiae. J Biol Phys 2008; 34:63-71. [PMID: 19669493 DOI: 10.1007/s10867-008-9105-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 07/04/2008] [Indexed: 10/21/2022] Open
Abstract
DNA repair, checkpoint pathways and protection mechanisms against different types of perturbations are critical factors for the prevention of genomic instability. The aim of the present work was to analyze the roles of RAD17 and HDF1 gene products during the late stationary phase, in haploid and diploid yeast cells upon gamma irradiation. The checkpoint protein, Rad17, is a component of a PCNA-like complex-the Rad17/Mec3/Ddc1 clamp-acting as a damage sensor; this protein is also involved in double-strand break (DBS) repair in cycling cells. The HDF1 gene product is a key component of the non-homologous end-joining pathway (NHEJ). Diploid and haploid rad17Delta/rad17Delta, and hdf1Delta Saccharomyces cerevisiae mutant strains and corresponding isogenic wild types were used in the present study. Yeast cells were grown in standard liquid nutrient medium, and maintained at 30 degrees C for 21 days in the stationary phase, without added nutrients. Cell samples were irradiated with (60)Co gamma rays at 5 Gy/s, 50 Gy <or= Dabs <or= 200 Gy. Thereafter, cells were incubated in PBS (liquid holding: LH, 0 <or= t <or= 24 h). DNA chromosomal analysis (by pulsed-field electrophoresis), and surviving fractions were determined as a function of absorbed doses, either immediately after irradiation or after LH. Our results demonstrated that the proteins Rad17, as well as Hdf1, play essential roles in DBS repair and survival after gamma irradiation in the late stationary phase and upon nutrient stress (LH after irradiation). In haploid cells, the main pathway is NHEJ. In the diploid state, the induction of LH recovery requires the function of Rad17. Results are compatible with the action of a network of DBS repair pathways expressed upon different ploidies, and different magnitudes of DNA damage.
Collapse
|
15
|
Bracesco N, Candreva EC, Keszenman D, Sánchez AG, Soria S, Dell M, Siede W, Nunes E. Roles of Saccharomyces cerevisiae RAD17 and CHK1 checkpoint genes in the repair of double-strand breaks in cycling cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:401-7. [PMID: 17624540 DOI: 10.1007/s00411-007-0119-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 06/15/2007] [Indexed: 05/16/2023]
Abstract
Checkpoints are components of signalling pathways involved in genome stability. We analysed the putative dual functions of Rad17 and Chk1 as checkpoints and in DNA repair using mutant strains of Saccharomyces cerevisiae. Logarithmic populations of the diploid checkpoint-deficient mutants, chk1Delta/chk1Delta and rad17Delta/rad17Delta, and an isogenic wild-type strain were exposed to the radiomimetic agent bleomycin (BLM). DNA double-strand breaks (DSBs) determined by pulsed-field electrophoresis, surviving fractions, and proliferation kinetics were measured immediately after treatments or after incubation in nutrient medium in the presence or absence of cycloheximide (CHX). The DSBs induced by BLM were reduced in the wild-type strain as a function of incubation time after treatment, with chromosomal repair inhibited by CHX. rad17Delta/rad17Delta cells exposed to low BLM concentrations showed no DSB repair, low survival, and CHX had no effect. Conversely, rad17Delta/rad17Delta cells exposed to high BLM concentrations showed DSB repair inhibited by CHX. chk1Delta/chk1Delta cells showed DSB repair, and CHX had no effect; these cells displayed the lowest survival following high BLM concentrations. Present results indicate that Rad17 is essential for inducible DSB repair after low BLM-concentrations (low levels of oxidative damage). The observations in the chk1Delta/chk1Delta mutant strain suggest that constitutive nonhomologous end-joining is involved in the repair of BLM-induced DSBs. The differential expression of DNA repair and survival in checkpoint mutants as compared to wild-type cells suggests the presence of a regulatory switch-network that controls and channels DSB repair to alternative pathways, depending on the magnitude of the DNA damage and genetic background.
Collapse
Affiliation(s)
- Nelson Bracesco
- Lab. Radiobiología, Departamento Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruiz-Gómez MJ, Martínez-Morillo M. Iron(III) chloride hexahydrate does not enhance methotrexate cytotoxicity on Saccharomyces cerevisiae. Chemotherapy 2006; 52:226-30. [PMID: 16873995 DOI: 10.1159/000094768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 09/06/2005] [Indexed: 11/19/2022]
Abstract
Methotrexate is a potent inhibitor of dihydropholate reductase that has been used as effective antineoplastic treatment due to its capacity to inhibit cell growth. In a previous work published in Bioelectrochemistry 2003;60:81-86, we reported a statistically significant increment of 40.1 and 29.4% in methotrexate potency when MCF-7 breast cancer cells were exposed simultaneously to iron(III) chloride hexahydrate (FeCl(3).6H(2)O) and methotrexate. The aim of this study was to investigate whether iron(III) could produce, on a Saccharomyces cerevisiae wild-type strain, alterations on methotrexate potency by the drop test survival assay and proliferation studies measured after 24 and 96 h of exposure. The data presented in the current report indicate that FeCl(3).6H(2)O (1, 10, 100 and 500 microg/ml) does not induce modulation of the action of methotrexate (10, 100 and 500 microg/ml) in S. cerevisiae yeast cells when they are exposed simultaneously for 24 and 96 h.
Collapse
Affiliation(s)
- M J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Teatinos s/n, Malaga, Spain
| | | |
Collapse
|
17
|
Toh GWL, O'Shaughnessy AM, Jimeno S, Dobbie IM, Grenon M, Maffini S, O'Rorke A, Lowndes NF. Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 2006; 5:693-703. [PMID: 16650810 DOI: 10.1016/j.dnarep.2006.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 12/22/2022]
Abstract
In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lysine 79 methylation, have also been demonstrated. Here, we show that Rad9 recruitment to foci and bulk chromatin occurs specifically after ionising radiation treatment in G2 cells. This stable recruitment correlates with late stages of double strand break (DSB) repair and, surprisingly, it is the hypophosphorylated form of Rad9 that is retained on chromatin rather than the hyperphosphorylated, checkpoint-associated, form. Stable Rad9 accumulation in foci requires the Mec1 kinase and two independently regulated histone modifications, H2A phosphorylation and Dot1-dependent H3 methylation. In addition, Rad9 is selectively recruited to a subset of Rad52 repair foci. These results, together with the observation that rad9Delta cells are defective in repair of IR breaks in G2, strongly indicate a novel post checkpoint activation role for Rad9 in promoting efficient repair of DNA DSBs by homologous recombination.
Collapse
Affiliation(s)
- Geraldine W-L Toh
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Singh RK, Krishna M. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae. Radiat Res 2006; 164:781-90. [PMID: 16296884 DOI: 10.1667/rr3460.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India 400085.
| | | |
Collapse
|
19
|
Ruiz-Gómez MJ, Prieto-Barcia MI, Ristori-Bogajo E, Martínez-Morillo M. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 2004; 64:151-5. [PMID: 15296788 DOI: 10.1016/j.bioelechem.2004.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 04/26/2004] [Accepted: 04/30/2004] [Indexed: 11/26/2022]
Abstract
The present work reports the growth effects induced by static and sinusoidal 50 Hz magnetic fields (MF) on the haploid yeast strain Saccharomyces cerevisiae WS8105-1C. Magnetic fields were generated by a pair of Helmholtz coils (40 cm in diameter) with 154 turns of copper wire in each and separated 20 cm. The experiments were performed at 0.35 and 2.45 mT, and yeasts were exposed to MF during 24 and 72 h in the homogeneous field area. Growth was monitored by measuring the optical density at 600 nm. The data presented in the current report indicate that static and sinusoidal 50 Hz MF (0.35 and 2.45 mT) do not induce alterations in the growth of S. cerevisiae.
Collapse
Affiliation(s)
- M J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Teatinos s/n, 29071, Spain.
| | | | | | | |
Collapse
|
20
|
Lisby M, Barlow JH, Burgess RC, Rothstein R. Choreography of the DNA Damage Response. Cell 2004; 118:699-713. [PMID: 15369670 DOI: 10.1016/j.cell.2004.08.015] [Citation(s) in RCA: 713] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 07/22/2004] [Accepted: 07/27/2004] [Indexed: 01/12/2023]
Abstract
DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting and processing DNA ends in conjunction with Sae2 and by RP-A recognizing single-stranded DNA and recruiting additional checkpoint and repair proteins.
Collapse
Affiliation(s)
- Michael Lisby
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
21
|
Cohen Y, Dardalhon M, Averbeck D. Homologous recombination is essential for RAD51 up-regulation in Saccharomyces cerevisiae following DNA crosslinking damage. Nucleic Acids Res 2002; 30:1224-32. [PMID: 11861915 PMCID: PMC101242 DOI: 10.1093/nar/30.5.1224] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 12/28/2001] [Accepted: 01/08/2002] [Indexed: 11/15/2022] Open
Abstract
We have determined the kinetics of up-regulation of the homologous recombination gene RAD51, one of the genes induced following DNA damage in isogenic haploid DNA repair-deficient mutants of Saccharomyces cerevisiae, using treatment with the DNA crosslinking agent 8-methoxypsoralen. We show that RAD51 is up-regulated concomitantly, although independently, with a shift from the G1 cell cycle phase to G2/M arrest. This up-regulation is absent in homologous recombination repair-deficient mutants and increased in mutants deficient in nucleotide excision repair and pol(zeta)-dependent translesion synthesis. We demonstrate that the Rad53-dependent DNA damage signal transduction cascade is active in RAD51 non-inducing mutants. However, when independently eliminated, it too abolishes RAD51 up-regulation. We present a model in which RAD51 up-regulation requires two signals: one depending on the Rad53-dependent DNA damage signal transduction cascade and the other on homologous recombination repair.
Collapse
Affiliation(s)
- Yuval Cohen
- Institut Curie, Section de Recherche, UMR 2027 CNRS/IC, LRC-28V du CEA, Centre Universitaire Paris-Sud, Bât. 110, F-91405 Orsay, France
| | | | | |
Collapse
|
22
|
Abstract
Ku proteins are associated with a variety of cellular processes such as repair of DNA-double-strand breaks, telomere maintenance and retrotransposition. In recent years, we have learned a lot about their cellular and molecular functions and it has turned out that Ku-dependent processes affect the stability of the genome, both positively and negatively, in several ways. This article gives an overview on the role of Ku in determining the shape of the genome.
Collapse
Affiliation(s)
- Anna A. Friedl
- Strahlenbiologisches Institut der Universität München, Schiller Straße 42, 80336 München, Germany
| |
Collapse
|
23
|
Kiechle M, Friedl AA, Manivasakam P, Eckardt-Schupp F, Schiestl RH. DNA integration by Ty integrase in yku70 mutant Saccharomyces cerevisiae cells. Mol Cell Biol 2000; 20:8836-44. [PMID: 11073984 PMCID: PMC86530 DOI: 10.1128/mcb.20.23.8836-8844.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present work we examined nonhomologous integration of plasmid DNA in a yku70 mutant. Ten of 14 plasmids integrated as composite elements, including Ty sequences probably originating from erroneous strand-switching and/or priming events. Three additional plasmids integrated via Ty integrase without cointegrating Ty sequences, as inferred from 5-bp target site duplication and integration site preferences. Ty integrase-mediated integration of non-Ty DNA has never been observed in wild-type cells, although purified integrase is capable of using non-Ty DNA as a substrate in vitro. Hence our data implicate yKu70 as the cellular function preventing integrase from accepting non-Ty DNA as a substrate.
Collapse
Affiliation(s)
- M Kiechle
- Institute of Radiobiology, GSF Research Center, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
24
|
Abstract
Prokaryotic and eukaryotic cells have developed a network of DNA repair systems that restore genomic integrity following DNA damage from endogenous and exogenous genotoxic sources. One of the mechanisms used to repair damaged chromosomes is genetic recombination, in which information present as a second chromosomal copy is used to repair a damaged region of the genome. In this review, I summarized what is known about the molecular and cellular mechanisms by which various DNA-damaging agents induce recombination in yeast. The yeast Saccharomyces cerevisiae has served as an excellent model organism to study the induction of recombination. It has helped to define the basic phenomenology and to isolate the genes involved in the process. Given the evolutionary conservation of the various DNA repair systems in eukaryotes, it is likely that the knowledge gathered about induced recombination in yeast is applicable to mammalian cells and thus to humans. Many carcinogens are known to induce recombination and to cause chromosomal rearrangements. An understanding of the mechanisms, by which genotoxic agents cause increased levels of recombination will have important consequences for the treatment of cancer, and for the assessment of risks arising from exposure to genotoxic agents in humans.
Collapse
Affiliation(s)
- M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
25
|
Fellerhoff B, Eckardt-Schupp F, Friedl AA. Subtelomeric repeat amplification is associated with growth at elevated temperature in yku70 mutants of Saccharomyces cerevisiae. Genetics 2000; 154:1039-51. [PMID: 10757752 PMCID: PMC1460988 DOI: 10.1093/genetics/154.3.1039] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inactivation of the Saccharomyces cerevisiae gene YKU70 (HDF1), which encodes one subunit of the Ku heterodimer, confers a DNA double-strand break repair defect, shortening of and structural alterations in the telomeres, and a severe growth defect at 37 degrees. To elucidate the basis of the temperature sensitivity, we analyzed subclones derived from rare yku70 mutant cells that formed a colony when plated at elevated temperature. In all these temperature-resistant subclones, but not in cell populations shifted to 37 degrees, we observed substantial amplification and redistribution of subtelomeric Y' element DNA. Amplification of Y' elements and adjacent telomeric sequences has been described as an alternative pathway for chromosome end stabilization that is used by postsenescence survivors of mutants deficient for the telomerase pathway. Our data suggest that the combination of Ku deficiency and elevated temperature induces a potentially lethal alteration of telomere structure or function. Both in yku70 mutants and in wild type, incubation at 37 degrees results in a slight reduction of the mean length of terminal restriction fragments, but not in a significant loss of telomeric (C(1-3)A/TG(1-3))(n) sequences. We propose that the absence of Ku, which is known to bind to telomeres, affects the telomeric chromatin so that its chromosome end-defining function is lost at 37 degrees.
Collapse
Affiliation(s)
- B Fellerhoff
- GSF-Forschungszentrum, Institut für Strahlenbiologie, 85758 Oberschleissheim, Germany
| | | | | |
Collapse
|
26
|
Moore CW, McKoy J, Dardalhon M, Davermann D, Martinez M, Averbeck D. DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae. Genetics 2000; 154:1085-99. [PMID: 10757755 PMCID: PMC1461006 DOI: 10.1093/genetics/154.3.1085] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired.
Collapse
Affiliation(s)
- C W Moore
- Department of Microbiology and Immunology, City University of New York Medical School/Sophie Davis School of Biomedical Education and Graduate Programs in Biochemistry and Biology, New York, New York 10031, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Ishii Y, Ikushima T. Involvement of G2-dependent DNA double-strand break repair in the formation of ultraviolet light B-induced chromosomal aberrations. Mutat Res 1999; 427:99-103. [PMID: 10393264 DOI: 10.1016/s0027-5107(99)00093-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wortmannin, an inhibitor of DNA double-strand break (DSB) repair added 19 h before harvest enhanced the incidence of ultraviolet light B (UVB)-induced chromatid aberrations in Chinese hamster V79 cells. Posttreatment with wortmannin for last 3 h of culture also enhanced the yield of breakage-type chromatid aberrations and suppressed the yield of exchange-type chromatid aberrations almost completely. Thus, the inhibition of DSB repair in the G2 phase stimulated the breakage-type aberration formation, while suppressing the exchange-type aberration formation. We propose the model of UVB-induced chromatid-type aberration formation which might be fully related to G2-dependent DSB repair pathway.
Collapse
Affiliation(s)
- Y Ishii
- Department of Radiation Biology, B4, Faculty of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
28
|
Abstract
Eukaryotic cells respond to radiation-induced damage in DNA and other cellular components by turning on cascades of regulatory events which constitute a complex network of pathways of cell cycle checkpoints, DNA repair and damage tolerance mechanisms, recombination and delayed cell death (apoptosis). By virtue of the high homology in structure and function of yeast and mammalian proteins several DNA repair pathways that may be upregulated in response to radiation, and some of their regulatory factors involved in sensing of damage, signal transduction by protein kinase cascades and transcription have been identified. In yeast, genes for DNA synthesis and replicative damage bypass, for base and nucleotide excision repair, in particular global genome repair, and for crucial steps in DNA double strand break repair by homologous recombination show enhanced expression in response to radiation. In mammalian cells, the identification of homologous genes and upregulated homologous DNA repair pathways makes fast progress. It is, however, evident that the regulatory network is considerably more complex than in yeast. The improved understanding on the molecular level of the radiation-inducible cellular responses to radiation is of high public interest. Especially, the response to very low doses may have relevance for the risk estimation for ionising radiation and, possibly as well, ultraviolet light (UV-B), and for the design of suitable dose fractionation schemes for radiotherapy.
Collapse
Affiliation(s)
- F Eckardt-Schupp
- Institute of Radiobiology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | |
Collapse
|