1
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and Systematic NMR Measurements of Sequence-Dependent A-T Hoogsteen Dynamics in the DNA Double Helix. Biochemistry 2025; 64:1042-1054. [PMID: 39982856 DOI: 10.1021/acs.biochem.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
The dynamic properties of DNA depend on the sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging, especially when they involve lowly populated and short-lived conformational states. Using 1H CEST supplemented by targeted 13C R1ρ NMR experiments, we quantitatively measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in 13 trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. Our results uncover a unique conformational basis for sequence-specificity in the DNA double helix and establish the utility of NMR to quantitatively and comprehensively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
2
|
Bakhanashvili M. The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions. Cells 2024; 13:1512. [PMID: 39329696 PMCID: PMC11429533 DOI: 10.3390/cells13181512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The virus-host relationship is indispensable for executing successful viral infection. The pathogenesis of HIV is determined by an intricate interaction between the host and the virus for the regulation of HIV infection, thereby influencing various aspects, including the regulation of signaling pathways. High mutation rates and population heterogeneity characterize HIV with consequences for viral pathogenesis and the potential to escape the immune system and anti-viral inhibitors used in therapy. The origin of the high mutation rates exhibited by HIV may be attributed to a limited template-copied fidelity that likely operates in the cytoplasm. HIV-1 infection induces upregulation and activation of tumor suppressor p53 protein in the early stages of HIV-1 infection. p53 plays a multifaceted role in the context of HIV infection, thereby affecting viral replication. p53 is involved in maintaining genetic integrity, actively participating in various DNA repair processes through its various biochemical activities and via its ability to interact with components of the repair machinery. This report focuses on the impact of the p53 protein on the HIV-1 reverse transcription process while incorporating various incorrect and non-canonical nucleotides. The presence of functional host-coded p53 protein with proofreading-repair activities in the cytoplasm may lead to various biological outcomes.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
3
|
Gustavsson E, Grünewald K, Elias P, Hällberg BM. Dynamics of the Herpes simplex virus DNA polymerase holoenzyme during DNA synthesis and proof-reading revealed by Cryo-EM. Nucleic Acids Res 2024; 52:7292-7304. [PMID: 38806233 PMCID: PMC11229320 DOI: 10.1093/nar/gkae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.
Collapse
Affiliation(s)
- Emil Gustavsson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Building 15, 22607 Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Building 15, 22607 Hamburg, Germany
- Leibniz-Institute of Virology, Martinistraße 52, 20251 Hamburg, Germany
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Per Elias
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Building 15, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and systematic NMR measurements of sequence-dependent A-T Hoogsteen dynamics uncovers unique conformational specificity in the DNA double helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594415. [PMID: 38798635 PMCID: PMC11118333 DOI: 10.1101/2024.05.15.594415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The propensities to form lowly-populated short-lived conformations of DNA could vary with sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging. Using 1H CEST and 13C R 1 ρ NMR, we measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in thirteen trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. The Hoogsteen dynamics had a distinct sequence-dependence compared to duplex stability and minor groove width. Thus, our results uncover a unique source of sequence-specificity hidden within the DNA double helix in the form of A-T Hoogsteen dynamics and establish the utility of 1H CEST to quantitively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
5
|
Nedorezova DD, Rubel MS, Rubel AA. Multicomponent DNAzyme Nanomachines: Structure, Applications, and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S249-S261. [PMID: 38621754 DOI: 10.1134/s0006297924140141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 04/17/2024]
Abstract
Nucleic acids (NAs) are important components of living organisms responsible for the storage and transmission of hereditary information. They form complex structures that can self-assemble and bind to various biological molecules. DNAzymes are NAs capable of performing simple chemical reactions, which makes them potentially useful elements for creating DNA nanomachines with required functions. This review focuses on multicomponent DNA-based nanomachines, in particular on DNAzymes as their main functional elements, as well as on the structure of DNAzyme nanomachines and their application in the diagnostics and treatment of diseases. The article also discusses the advantages and disadvantages of DNAzyme-based nanomachines and prospects for their future applications. The review provides information about new technologies and the possibilities of using NAs in medicine.
Collapse
|
6
|
Berdis A. Nucleobase-modified nucleosides and nucleotides: Applications in biochemistry, synthetic biology, and drug discovery. Front Chem 2022; 10:1051525. [PMID: 36531317 PMCID: PMC9748101 DOI: 10.3389/fchem.2022.1051525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
. DNA is often referred to as the "molecule of life" since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, recent chemical and biochemical studies using nucleobase-modified nucleotides that contain "non-hydrogen bonding" functional groups have challenged many of the dogmatic views for the necessity of hydrogen-bonding interactions for DNA stability and function. Based on years of exciting research, this area has expanded tremendously and is thus too expansive to provide a comprehensive review on the topic. As such, this review article provides an opinion highlighting how nucleobase-modified nucleotides are being applied in diverse biomedical fields, focusing on three exciting areas of research. The first section addresses how these analogs are used as mechanistic probes for DNA polymerase activity and fidelity during replication. This section outlines the synthetic logic and medicinal chemistry approaches used to replace hydrogen-bonding functional groups to examine the contributions of shape/size, nucleobase hydrophobicity, and pi-electron interactions. The second section extends these mechanistic studies to provide insight into how nucleobase-modified nucleosides are used in synthetic biology. One example is through expansion of the genetic code in which changing the composition of DNA makes it possible to site-specifically incorporate unnatural amino acids bearing unique functional groups into enzymes and receptors. The final section describes results of pre-clinical studies using nucleobase-modified nucleosides as potential therapeutic agents against diseases such as cancer.
Collapse
Affiliation(s)
- Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
7
|
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021; 13:1882. [PMID: 34578463 PMCID: PMC8473064 DOI: 10.3390/v13091882] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Reha-Krantz LJ, Goodman MF. John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics 2020; 216:827-836. [PMID: 33268388 PMCID: PMC7768258 DOI: 10.1534/genetics.120.303813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
John W. Drake died 02-02-2020, a mathematical palindrome, which he would have enjoyed, given his love of "word play and logic," as stated in his obituary and echoed by his family, friends, students, and colleagues. Many aspects of Jan's career have been reviewed previously, including his early years as a Caltech graduate student, and when he was editor-in-chief, with the devoted assistance of his wife Pam, of this journal for 15 impactful years. During his editorship, he raised the profile of GENETICS as the flagship journal of the Genetics Society of America and inspired and contributed to the creation of the Perspectives column, coedited by Jim Crow and William Dove. At the same time, Jan was building from scratch the Laboratory of Molecular Genetics on the newly established Research Triangle Park campus of the National Institute of Environmental Health Science, which he headed for 30 years. This commentary offers a unique perspective on Jan's legacy; we showcase Jan's 1969 benchmark discovery of antimutagenic T4 DNA polymerases and the research by three generations (and counting) of scientists whose research stems from that groundbreaking discovery. This is followed by a brief discussion of Jan's passion: his overriding interest in analyzing mutation rates across species. Several anecdotal stories are included to bring alive one of Jan's favorite phrases, "to think like a geneticist." We feature Jan's genetical approach to mutation studies, along with the biochemistry of DNA polymerase function, our area of expertise. But in the end, we acknowledge, as Jan did, that genetics, also known as in vivo biochemistry, prevails.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
9
|
Dietlein F, Weghorn D, Taylor-Weiner A, Richters A, Reardon B, Liu D, Lander ES, Van Allen EM, Sunyaev SR. Identification of cancer driver genes based on nucleotide context. Nat Genet 2020; 52:208-218. [PMID: 32015527 PMCID: PMC7031046 DOI: 10.1038/s41588-019-0572-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Cancer genomes contain large numbers of somatic mutations but few of these mutations drive tumor development. Current approaches either identify driver genes on the basis of mutational recurrence or approximate the functional consequences of nonsynonymous mutations by using bioinformatic scores. Passenger mutations are enriched in characteristic nucleotide contexts, whereas driver mutations occur in functional positions, which are not necessarily surrounded by a particular nucleotide context. We observed that mutations in contexts that deviate from the characteristic contexts around passenger mutations provide a signal in favor of driver genes. We therefore developed a method that combines this feature with the signals traditionally used for driver-gene identification. We applied our method to whole-exome sequencing data from 11,873 tumor-normal pairs and identified 460 driver genes that clustered into 21 cancer-related pathways. Our study provides a resource of driver genes across 28 tumor types with additional driver genes identified according to mutations in unusual nucleotide contexts.
Collapse
Affiliation(s)
- Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Donate Weghorn
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Centre for Genomic Regulation, Barcelona, Spain
| | - Amaro Taylor-Weiner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - André Richters
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Saragani Y, Hizi A, Rahav G, Zaouch S, Bakhanashvili M. Cytoplasmic p53 contributes to the removal of uracils misincorporated by HIV-1 reverse transcriptase. Biochem Biophys Res Commun 2018; 497:804-810. [PMID: 29470985 DOI: 10.1016/j.bbrc.2018.02.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 01/15/2023]
Abstract
HIV-1 reverse transcriptase (RT) in the cytoplasm of HIV-infected cells efficiently inserts the non-canonical dUTP into the proviral DNA, and extends the dU-terminated DNA. The misincorporation of dUTP leads to mutagenesis, and uracils can down-regulate viral gene expression. However, uracilation might also protect HIV DNA from auto-integration in the cytoplasm. Tumor suppressor p53 protein, exhibiting inherent 3'→5' exonuclease activity, provides a potential host-derived repair mechanism during HIV reverse transcription for the misincorporation of various wrong nucleotides, leading to both base-base mismatches and incorporated non-canonical ribonucleotides. Since the presence of proofreading activity is essential for DNA synthesis accuracy, we elucidated the potential involvement of cytoplasmic p53 in the U-editing activities during insertion of dUTP into DNA by recombinant HIV-1 RT (using isogenic p53-proficient and -deficient HCT116 cells). The biochemical data show that p53 in cytoplasm can participate through the intermolecular pathway in a dU-damage-associated repair mechanism by its ability to remove preformed 3'-terminal dUs, thus preventing further extension of 3' dU-terminated primer during DNA synthesis by HIV-1 RT. The specific depletion of p53 from cytoplasmic lysates of repair-proficient p53-harboring cells reduced this negative effect. Accordingly, the increased abundance of p53 in nutlin-treated cells correlates with enhanced error-correction functions, namely, removal of incorporated uracil. The data substantiate the significance of p53 as a potential proofreader for removal of non-canonical dUTP from HIV DNA, thus preventing the consequences of dUTP misincorporation in cell-type specific infectivity of HIV.
Collapse
Affiliation(s)
- Yossi Saragani
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Amnon Hizi
- Dep. Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Sara Zaouch
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| |
Collapse
|
11
|
Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD. Interpreting Reverse Transcriptase Termination and Mutation Events for Greater Insight into the Chemical Probing of RNA. Biochemistry 2017; 56:4713-4721. [PMID: 28820243 PMCID: PMC5648349 DOI: 10.1021/acs.biochem.7b00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemical probing has the power to provide insight into RNA conformation in vivo and in vitro, but interpreting the results depends on methods to detect the chemically modified nucleotides. Traditionally, the presence of modified bases was inferred from their ability to halt reverse transcriptase during primer extension and the locations of termination sites observed by electrophoresis or sequencing. More recently, modification-induced mutations have been used as a readout for chemical probing data. Given the variable propensity for mismatch incorporation and read-through with different reverse transcriptases, we examined how termination and mutation events compare to each other in the same chemical probing experiments. We found that mutations and terminations induced by dimethyl sulfate probing are both specific for methylated bases, but these two measures have surprisingly little correlation and represent largely nonoverlapping indicators of chemical modification data. We also show that specific biases for modified bases depend partly on local sequence context and that different reverse transcriptases show different biases toward reading a modification as a stop or a mutation. These results support approaches that incorporate analysis of both termination and mutation events into RNA probing experiments.
Collapse
Affiliation(s)
- Alec N. Sexton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Peter Y. Wang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
12
|
|
13
|
Kakushadze Z, Yu W. *K-means and cluster models for cancer signatures. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 13:7-31. [PMID: 29021969 PMCID: PMC5634820 DOI: 10.1016/j.bdq.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/03/2023]
Abstract
We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.
Collapse
Affiliation(s)
- Zura Kakushadze
- Quantigic® Solutions LLC, 1127 High Ridge Road #135, Stamford, CT 06905, United States
- Free University of Tbilisi, Business School & School of Physics, 240, David Agmashenebeli Alley, Tbilisi 0159, Georgia
| | - Willie Yu
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
14
|
Mutation Clusters from Cancer Exome. Genes (Basel) 2017; 8:genes8080201. [PMID: 28809811 PMCID: PMC5575665 DOI: 10.3390/genes8080201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.
Collapse
|
15
|
A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase. J Mol Biol 2017; 429:2308-2323. [PMID: 28601494 DOI: 10.1016/j.jmb.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions.
Collapse
|
16
|
Song YS, Shu YG, Zhou X, Ou-Yang ZC, Li M. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:025101. [PMID: 27842005 DOI: 10.1088/0953-8984/29/2/025101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.
Collapse
Affiliation(s)
- Yong-Shun Song
- School of Physical Sciences, University of Chinese Academy of Sciences, No 19A Yuquan Road, Beijing 100049, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Bonda E, Rahav G, Kaya A, Bakhanashvili M. p53 in the mitochondria, as a trans-acting protein, provides error-correction activities during the incorporation of non-canonical dUTP into DNA. Oncotarget 2016; 7:73323-73336. [PMID: 27689337 PMCID: PMC5341982 DOI: 10.18632/oncotarget.12331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in mitochondrial DNA is an outcome of errors produced by DNA polymerase γ during replication and failure of the repair mechanism. Misincorporation of non-canonical dUTP leads to mutagenesis or apoptosis, and may contribute to the cytotoxic effects of 5'-fluorouracil chemotherapy. Tumor suppressor p53 protein in the mitochondria displays physical and functional interactions with mitochondrial DNA and polymerase γ, and by its intrinsic 3'→5' exonuclease activity can diminish the polymerization errors. Here we demonstrate the impact of p53 on incorporation of uracil into DNA examined with mitochondrial fractions, as the source of polymerase γ. p53 in mitochondria facilitates DNA damage repair functions resulting from uracil-DNA misincorporation. Our biochemical studies revealed that the procession of U:A and mismatched U:G lesions enhances in the presence of recombinant or endogenous cytoplasmic p53. p53 in mitochondria can function as an exonuclease/proofreader for polymerase γ by either decreasing the incorporation of non-canonical dUTP into DNA or by promoting the excision of incorporated nucleotide from nascent DNA, thus expanding the spectrum of DNA damage sites exploited for proofreading as a trans-acting protein. The data suggest that p53 may contribute to defense of the cells from consequences of dUTP misincorporation in both normal and tumor cells.
Collapse
Affiliation(s)
- Elad Bonda
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Angelina Kaya
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 5265601, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Goodman MF. Better living with hyper-mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:421-34. [PMID: 27273795 PMCID: PMC4945469 DOI: 10.1002/em.22023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 05/12/2023]
Abstract
The simplest forms of mutations, base substitutions, typically have negative consequences, aside from their existential role in evolution and fitness. Hypermutations, mutations on steroids, occurring at frequencies of 10(-2) -10(-4) per base pair, straddle a domain between fitness and death, depending on the presence or absence of regulatory constraints. Two facets of hypermutation, one in Escherichia coli involving DNA polymerase V (pol V), the other in humans, involving activation-induced deoxycytidine deaminase (AID) are portrayed. Pol V is induced as part of the DNA-damage-induced SOS regulon, and is responsible for generating the lion's share of mutations when catalyzing translesion DNA synthesis (TLS). Four regulatory mechanisms, temporal, internal, conformational, and spatial, activate pol V to copy damaged DNA and then deactivate it. On the flip side of the coin, SOS-induced pols V, IV, and II mutate undamaged DNA, thus providing genetic diversity heightening long-term survival and evolutionary fitness. Fitness in humans is principally the domain of a remarkably versatile immune system marked by somatic hypermutations (SHM) in immunoglobulin variable (IgV) regions that ensure antibody (Ab) diversity. AID initiates SHM by deaminating C → U, favoring hot WRC (W = A/T, R = A/G) motifs. Since there are large numbers of trinucleotide motif targets throughout IgV, AID must exercise considerable catalytic restraint to avoid attacking such sites repeatedly, which would otherwise compromise diversity. Processive, random, and inefficient AID-catalyzed dC deamination simulates salient features of SHM, yet generates B-cell lymphomas when working at the wrong time in the wrong place. Environ. Mol. Mutagen. 57:421-434, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myron F. Goodman
- Correspondence to Myron F. Goodman, Department of Biological Sciences, Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910, USA,
| |
Collapse
|
19
|
|
20
|
Berdis AJ, McCutcheon D. The use of non-natural nucleotides to probe template-independent DNA synthesis. Chembiochem 2016; 8:1399-408. [PMID: 17607682 DOI: 10.1002/cbic.200700096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The vast majority of DNA polymerases use the complementary templating strand of DNA to guide each nucleotide incorporation. There are instances, however, in which polymerases can efficiently incorporate nucleotides in the absence of templating information. This process, known as translesion DNA synthesis, can alter the proper genetic code of an organism. To further elucidate the mechanism of template-independent DNA synthesis, we monitored the incorporation of various nucleotides at the "blunt-end" of duplex DNA by the high-fidelity bacteriophage T4 DNA polymerase. Although natural nucleotides are not incorporated at the blunt-end, a limited subset of non-natural indolyl analogues containing extensive pi-electron surface areas are efficiently utilized by the T4 DNA polymerase. These analogues possess high binding affinities that are remarkably similar to those measured during incorporation opposite an abasic site. In contrast, the k(pol) values are significantly lower during blunt-end extension when compared to incorporation opposite an abasic site. These kinetic differences suggest that the single-stranded region of the DNA template plays an important role during polymerization through stacking interactions with downstream bases, interactions with key amino acid residues, or both. In addition, we demonstrate that terminal deoxynucleotide transferase, a template-independent enzyme, can efficiently incorporate many of these non-natural nucleotides. However, that this unique polymerase cannot extend large, bulky non-natural nucleotides suggests that elongation is limited by steric constraints imposed by structural features present within the polymerase. Regardless, the kinetic data obtained from using either DNA polymerase indicate that template-independent synthesis can occur without the contributions of hydrogen-bonding interactions and suggest that pi-electron interactions play an important role in polymerization efficiency when templating information is not present.
Collapse
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
21
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
22
|
Ségurel L, Wyman MJ, Przeworski M. Determinants of Mutation Rate Variation in the Human Germline. Annu Rev Genomics Hum Genet 2014; 15:47-70. [DOI: 10.1146/annurev-genom-031714-125740] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laure Ségurel
- Laboratoire Éco-Anthropologie et Ethnobiologie, UMR 7206, Muséum National d'Histoire Naturelle–Centre National de la Recherche Scientifique–Université Paris 7 Diderot, Paris 75231, France;
| | - Minyoung J. Wyman
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Molly Przeworski
- Department of Human Genetics and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
23
|
Abstract
UNLABELLED Recombination plays a critical role in virus evolution. It helps avoid genetic decline and creates novel phenotypes. This promotes survival, and genome sequencing suggests that recombination has facilitated the evolution of human pathogens, including orthopoxviruses such as variola virus. Recombination can also be used to map genes, but although recombinant poxviruses are easily produced in culture, classical attempts to map the vaccinia virus (VACV) genome this way met with little success. We have sequenced recombinants formed when VACV strains TianTan and Dryvax are crossed under different conditions. These were a single round of growth in coinfected cells, five rounds of sequential passage, or recombinants obtained using leporipoxvirus-mediated DNA reactivation. Our studies showed that recombinants contain a patchwork of DNA, with the number of exchanges increasing with passage. Further passage also selected for TianTan DNA and correlated with increased plaque size. The recombinants produced through a single round of coinfection contain a disproportionate number of short conversion tracks (<1 kbp) and exhibited 1 exchange per 12 kbp, close to the ∼1 per 8 kbp in the literature. One by-product of this study was that rare mutations were also detected; VACV replication produces ∼1×10(-8) mutation per nucleotide copied per cycle of replication and ∼1 large (21 kbp) deletion per 70 rounds of passage. Viruses produced using DNA reactivation appeared no different from recombinants produced using ordinary methods. An attractive feature of this approach is that when it is combined with selection for a particular phenotype, it provides a way of mapping and dissecting more complex virus traits. IMPORTANCE When two closely related viruses coinfect the same cell, they can swap genetic information through a process called recombination. Recombination produces new viruses bearing different combinations of genes, and it plays an important role in virus evolution. Poxviruses are a family of viruses that includes variola (or smallpox) virus, and although poxviruses are known to recombine, no one has previously mapped the patterns of DNAs exchanged between viruses. We coinfected cells with two different vaccinia poxviruses, isolated the progeny, and sequenced them. We show that poxvirus recombination is a very accurate process that assembles viruses containing DNA copied from both parents. In a single round of infection, DNA is swapped back and forth ∼18 times per genome to make recombinant viruses that are a mosaic of the two parental DNAs. This mixes many different genes in complex combinations and illustrates how recombination can produce viruses with greatly altered disease potential.
Collapse
|
24
|
Aboud M, Oh HH, McCord B. Rapid direct PCR for forensic genotyping in under 25 min. Electrophoresis 2013; 34:1539-47. [DOI: 10.1002/elps.201200570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Maurice Aboud
- Department of Chemistry and Biochemistry and International Forensic Research Institute; Florida International University; Miami; FL; USA
| | - Hye Hyun Oh
- DNA Forensic Division; Supreme Prosecutors’ Office; Seoul; Korea
| | - Bruce McCord
- Department of Chemistry and Biochemistry and International Forensic Research Institute; Florida International University; Miami; FL; USA
| |
Collapse
|
25
|
Lee MYWT, Zhang S, Lin SHS, Chea J, Wang X, LeRoy C, Wong A, Zhang Z, Lee EYC. Regulation of human DNA polymerase delta in the cellular responses to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:683-698. [PMID: 23047826 DOI: 10.1002/em.21743] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
The p12 subunit of polymerase delta (Pol δ) is degraded in response to DNA damage induced by UV, alkylating agents, oxidative, and replication stresses. This leads to the conversion of the Pol δ4 holoenzyme to the heterotrimer, Pol δ3. We review studies that establish that Pol δ3 formation is an event that could have a major impact on cellular processes in genomic surveillance, DNA replication, and DNA repair. p12 degradation is dependent on the apical ataxia telangiectasia and Rad3 related (ATR) kinase and is mediated by the ubiquitin-proteasome system. Pol δ3 exhibits properties of an "antimutator" polymerase, suggesting that it could contribute to an increased surveillance against mutagenesis, for example, when Pol δ carries out bypass synthesis past small base lesions that engage in spurious base pairing. Chromatin immunoprecipitation analysis and examination of the spatiotemporal recruitment of Pol δ to sites of DNA damage show that Pol δ3 is the primary form of Pol δ associated with cyclobutane pyrimidine dimer lesions and therefore should be considered as the operative form of Pol δ engaged in DNA repair. We propose a model for the switching of Pol δ with translesion polymerases, incorporating the salient features of the recently determined structure of monoubiquitinated proliferating cell nuclear antigen and emphasizing the role of Pol δ3. Because of the critical role of Pol δ activity in DNA replication and repair, the formation of Pol δ3 in response to DNA damage opens the prospect that pleiotropic effects may ensue. This opens the horizons for future exploration of how this novel response to DNA damage contributes to genomic stability.
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Isothermal quadruplex priming amplification for DNA-based diagnostics. Biophys Chem 2012; 171:1-8. [PMID: 23232099 DOI: 10.1016/j.bpc.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
We previously developed a method, known as quadruplex priming amplification (QPA), which permits isothermal amplification of DNA. The assay is based on a DNA quadruplex formed by the GGGTGGGTGGGTGGG (G3T) sequence. G3T has three unique properties that are fundamental for QPA; (i) G3T forms a quadruplex with significantly more favorable thermodynamics than the corresponding DNA duplexes; (ii) removal of guanines at the 3'-end inhibits quadruplex formation; and (iii) incorporated fluorescent nucleotides, such as 2-aminopurine (2AP) or 6-methylisoxanthopterin (6MI), which are quenched by neighboring nucleotides, regain maximum emission upon quadruplex formation. New model studies carried out here with primers missing one, two and three guanines reveal that the driving force for QPA comes from the difference in thermal stability between the primer/template and the product complexes. Primers missing one and two guanines are able to self-dissociate from the template upon elongation, whereas QPA is not observed when the primer lacks three 3'-nucleotides. QPA reaches its maximum rate at temperatures slightly higher than the T(m) of the primer/template complex and is more efficient in the presence of only dGTP. QPA-based assays also revealed that Taq is able to incorporate thymidines opposite template 2AP, while no significant incorporation was observed opposite template 6MI.
Collapse
|
27
|
Zhu Y, Stroud J, Song L, Parris DS. Kinetic approaches to understanding the mechanisms of fidelity of the herpes simplex virus type 1 DNA polymerase. J Nucleic Acids 2010; 2010:631595. [PMID: 21197400 PMCID: PMC3010682 DOI: 10.4061/2010/631595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/13/2010] [Accepted: 09/30/2010] [Indexed: 12/25/2022] Open
Abstract
We discuss how the results of presteady-state and steady-state kinetic analysis of the polymerizing and excision activities of herpes simplex virus type 1 (HSV-1) DNA polymerase have led to a better understanding of the mechanisms controlling fidelity of this important model replication polymerase. Despite a poorer misincorporation frequency compared to other replicative polymerases with intrinsic 3′ to 5′ exonuclease (exo) activity, HSV-1 DNA replication fidelity is enhanced by a high kinetic barrier to extending a primer/template containing a mismatch or abasic lesion and by the dynamic ability of the polymerase to switch the primer terminus between the exo and polymerizing active sites. The HSV-1 polymerase with a catalytically inactivated exo activity possesses reduced rates of primer switching and fails to support productive replication, suggesting a novel means to target polymerase for replication inhibition.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, 2198 Graves Hall, 333 West Tenth Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
28
|
Motea EA, Lee I, Berdis AJ. Quantifying the energetic contributions of desolvation and π-electron density during translesion DNA synthesis. Nucleic Acids Res 2010; 39:1623-37. [PMID: 20952399 PMCID: PMC3045600 DOI: 10.1093/nar/gkq925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This report examines the molecular mechanism by which high-fidelity DNA polymerases select nucleotides during the replication of an abasic site, a non-instructional DNA lesion. This was accomplished by synthesizing several unique 5-substituted indolyl 2′-deoxyribose triphosphates and defining their kinetic parameters for incorporation opposite an abasic site to interrogate the contributions of π-electron density and solvation energies. In general, the Kd, app values for hydrophobic non-natural nucleotides are ∼10-fold lower than those measured for isosteric hydrophilic analogs. In addition, kpol values for nucleotides that contain less π-electron densities are slower than isosteric analogs possessing higher degrees of π-electron density. The differences in kinetic parameters were used to quantify the energetic contributions of desolvation and π-electron density on nucleotide binding and polymerization rate constant. We demonstrate that analogs lacking hydrogen-bonding capabilities act as chain terminators of translesion DNA replication while analogs with hydrogen bonding functional groups are extended when paired opposite an abasic site. Collectively, the data indicate that the efficiency of nucleotide incorporation opposite an abasic site is controlled by energies associated with nucleobase desolvation and π-electron stacking interactions whereas elongation beyond the lesion is achieved through a combination of base-stacking and hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Edward A Motea
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
29
|
Song C, Zhang C, Zhao M. Rapid and sensitive detection of DNA polymerase fidelity by singly labeled smart fluorescent probes. Biosens Bioelectron 2010; 26:2699-702. [PMID: 20875730 DOI: 10.1016/j.bios.2010.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
We report here a novel approach to monitor the DNA polymerase fidelity in detailed steps, including mispair extension, mispair formation and 3'→5' proofreading. The method is based on the photo-induced electron transfer between the natural base guanine and the labeled fluorophore. The G:T mispair extension catalyzed by the exonuclease-deficient Klenow fragment DNA polymerase (KF exo(-)) was easily detected and the effect of the nearest neighbor base pair on the mispair extension rate was clearly observed. More importantly, kinetics of the G:T, G:A and G:G mispair formation and extension under single turnover conditions were measured by continuous fluorescence-based assay for the first time. The probes also showed their applicability to discriminate the 3'→5' proofreading activity of different exonuclease-proficient DNA polymerases. The presented method may greatly simplify the screening and characterization procedures of the increasing number of polymerases that are thought to be potential targets for drug design and cancer treatment. It will also provide important information for deep understanding of the polymerase fidelity mechanism.
Collapse
Affiliation(s)
- Chen Song
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
30
|
Szczepanowska K, Foury F. A cluster of pathogenic mutations in the 3'-5' exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation. Hum Mol Genet 2010; 19:3516-29. [PMID: 20601675 DOI: 10.1093/hmg/ddq267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in DNA polymerase gamma (pol g), the unique replicase inside mitochondria, cause a broad and complex spectrum of diseases in human. We have used Mip1, the yeast pol g, as a model enzyme to characterize six pathogenic pol g mutations. Four mutations clustered in a highly conserved 3'-5' exonuclease module are localized in the DNA-binding channel in close vicinity to the polymerase domain. They result in an increased frequency of point mutations and high instability of the mitochondrial DNA (mtDNA) in yeast cells, and unexpectedly for mutator mutations in the exonuclease domain, they favour exonucleolysis versus polymerization. This trait is associated with highly decreased DNA-binding affinity and poorly processive DNA synthesis. Our data show for the first time that a 3'-5' exonuclease module of pol g plays a crucial role in the coordination of the polymerase and exonuclease functions and they strongly suggest that in patients the disease is not caused by defective proofreading but results from poor mtDNA replication generated by a severe imbalance between DNA synthesis and degradation.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Institute of Life Sciences, Croix du Sud 4/15, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
31
|
Abstract
Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with >or=93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows >or=72% of the correct extension product in all cases, and >or=90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.
Collapse
|
32
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 681] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
33
|
Reha-Krantz LJ. DNA polymerase proofreading: Multiple roles maintain genome stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1049-63. [DOI: 10.1016/j.bbapap.2009.06.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/16/2022]
|
34
|
Lu H, Krueger AT, Gao J, Liu H, Kool ET. Toward a designed genetic system with biochemical function: polymerase synthesis of single and multiple size-expanded DNA base pairs. Org Biomol Chem 2010; 8:2704-10. [PMID: 20407680 DOI: 10.1039/c002766a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of alternative architectures for genetic information-encoding systems offers the possibility of new biotechnological tools as well as basic insights into the function of the natural system. In order to examine the potential of benzo-expanded DNA (xDNA) to encode and transfer biochemical information, we carried out a study of the processing of single xDNA pairs by DNA Polymerase I Klenow fragment (Kf, an A-family sterically rigid enzyme) and by the Sulfolobus solfataricus polymerase Dpo4 (a flexible Y-family polymerase). Steady-state kinetics were measured and compared for enzymatic synthesis of the four correct xDNA pairs and twelve mismatched pairs, by incorporation of dNTPs opposite single xDNA bases. Results showed that, like Kf, Dpo4 in most cases selected the correctly paired partner for each xDNA base, but with efficiency lowered by the enlarged pair size. We also evaluated kinetics for extension by these polymerases beyond xDNA pairs and mismatches, and for exonuclease editing by the Klenow exo+ polymerase. Interestingly, the two enzymes were markedly different: Dpo4 extended pairs with relatively high efficiencies (within 18-200-fold of natural DNA), whereas Kf essentially failed at extension. The favorable extension by Dpo4 was tested further by stepwise synthesis of up to four successive xDNA pairs on an xDNA template.
Collapse
Affiliation(s)
- Haige Lu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
35
|
Bertram JG, Oertell K, Petruska J, Goodman MF. DNA polymerase fidelity: comparing direct competition of right and wrong dNTP substrates with steady state and pre-steady state kinetics. Biochemistry 2010; 49:20-8. [PMID: 20000359 DOI: 10.1021/bi901653g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA polymerase fidelity is defined as the ratio of right (R) to wrong (W) nucleotide incorporations when dRTP and dWTP substrates compete at equal concentrations for primer extension at the same site in the polymerase-primer-template DNA complex. Typically, R incorporation is favored over W by 10(3)-10(5)-fold, even in the absence of 3'-exonuclease proofreading. Straightforward in principle, a direct competition fidelity measurement is difficult to perform in practice because detection of a small amount of W is masked by a large amount of R. As an alternative, enzyme kinetics measurements to evaluate k(cat)/K(m) for R and W in separate reactions are widely used to measure polymerase fidelity indirectly, based on a steady state derivation by Fersht. A systematic comparison between direct competition and kinetics has not been made until now. By separating R and W products using electrophoresis, we have successfully taken accurate fidelity measurements for directly competing R and W dNTP substrates for 9 of the 12 natural base mispairs. We compare our direct competition results with steady state and pre-steady state kinetic measurements of fidelity at the same template site, using the proofreading-deficient mutant of Klenow fragment (KF(-)) DNA polymerase. All the data are in quantitative agreement.
Collapse
Affiliation(s)
- Jeffrey G Bertram
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
36
|
Williams AA, Darwanto A, Theruvathu JA, Burdzy A, Neidigh JW, Sowers LC. Impact of sugar pucker on base pair and mispair stability. Biochemistry 2009; 48:11994-2004. [PMID: 19899814 PMCID: PMC2814217 DOI: 10.1021/bi9014133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The selection of nucleoside triphosphates by a polymerase is controlled by several energetic and structural features, including base pairing geometry as well as sugar structure and conformation. Whereas base pairing has been considered exhaustively, substantially less is known about the role of sugar modifications for both nucleotide incorporation and primer extension. In this study, we synthesized oligonucleotides containing 2'-fluoro-modified nucleosides with constrained sugar pucker in an internucleotide position and, for the first time, at a primer 3'-end. The thermodynamic stability of these duplexes was examined. The nucleoside 2'-deoxy-2'-fluoroarabinofuranosyluracil [U(2'F(ara))] favors the 2'-endo conformation (DNA-like), while 2'-deoxy-2'-fluororibofuranosyluracil [U(2'F(ribo))] favors the 3'-endo conformation (RNA-like). Oligonucleotides containing U(2'F(ara)) have slightly higher melting temperatures (T(m)) than those containing U(2'F(ribo)) when located in internucleotide positions or at the 3'-end and when correctly paired with adenine or mispaired with guanine. However, both modifications decrease the magnitude of DeltaH degrees and DeltaS degrees for duplex formation in all sequence contexts. In examining the thermodynamic properties for this set of oligonucleotides, we find entropy-enthalpy compensation is apparent. Our thermodynamic findings led to a series of experiments with DNA ligase that reveal, contrary to expectation based upon observed T(m) values, that the duplex containing the U(2'F(ribo)) analogue is more easily ligated. The 2'-fluoro-2'-deoxynucleosides examined here are valuable probes of the impact of sugar constraint and are also members of an important class of antitumor and antiviral agents. The data reported here may facilitate an understanding of the biological properties of these agents, as well as the contribution of sugar conformation to replication fidelity.
Collapse
Affiliation(s)
- Adides A. Williams
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Agus Darwanto
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Jacob A. Theruvathu
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Artur Burdzy
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Jonathan W. Neidigh
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Lawrence C. Sowers
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350
| |
Collapse
|
37
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
38
|
Lee I, Berdis AJ. Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1064-80. [PMID: 19733263 DOI: 10.1016/j.bbapap.2009.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 11/25/2022]
Abstract
DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some cases, selectively incorporate non-natural nucleotides lacking classic hydrogen-bonding capabilities into DNA. In this review, we describe the results of several laboratories that have employed a variety of non-natural nucleotide analogs to decipher the molecular mechanism of DNA polymerization. The use of various non-natural nucleotides has lead to the development of several different models that can explain how efficient DNA synthesis can occur in the absence of hydrogen-bonding interactions. These models include the influence of steric fit and shape complementarity, hydrophobicity and solvation energies, base-stacking capabilities, and negative selection as alternatives to rules invoking simple recognition of hydrogen-bonding patterns. Discussions are also provided regarding how the kinetics of primer extension and exonuclease proofreading activities associated with high-fidelity DNA polymerases are influenced by the absence of hydrogen-bonding functional groups exhibited by non-natural nucleotides.
Collapse
Affiliation(s)
- Irene Lee
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
39
|
Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome. Blood 2009; 114:2753-63. [PMID: 19633202 DOI: 10.1182/blood-2008-11-190330] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Down syndrome (DS) children have a unique genetic susceptibility to develop leukemia, in particular, acute megakaryocytic leukemia (AMkL) associated with somatic GATA1 mutations. The study of this genetic susceptibility with the use of DS as a model of leukemogenesis has broad applicability to the understanding of leukemia in children overall. On the basis of the role of GATA1 mutations in DS AMkL, we analyzed the mutational spectrum of GATA1 mutations to begin elucidating possible mechanisms by which these sequence alterations arise. Mutational analysis revealed a predominance of small insertion/deletion, duplication, and base substitution mutations, including G:C>T:A, G:C>A:T, and A:T>G:C. This mutational spectrum points to potential oxidative stress and aberrant folate metabolism secondary to genes on chromosome 21 (eg, cystathionine-beta-synthase, superoxide dismutase) as potential causes of GATA1 mutations. Furthermore, DNA repair capacity evaluated in DS and non-DS patient samples provided evidence that the base excision repair pathway is compromised in DS tissues, suggesting that inability to repair DNA damage also may play a critical role in the unique susceptibility of DS children to develop leukemia. A model of leukemogenesis in DS is proposed in which mutagenesis is driven by cystathionine-beta-synthase overexpression and altered folate homeostasis that becomes fixed as the ability to repair DNA damage is compromised.
Collapse
|
40
|
Abstract
Replication inside a living cell, carried out by DNA polymerase, has an error rate far below that predicted by equilibrium thermodynamics from the affinities between nucleotides and a polymerase complex. The high fidelity is achieved through several distinctly different molecular mechanisms that include a nucleotide insertion checkpoint and 3'-5' exonuclease activity. The checkpoint mechanism has recently been articulated as a new paradigm for high specificity. A rigorous thermodynamic analysis of the bare DNA polymerization reaction, i.e., in the absence of exonuclease activity and proofreading, is developed in this paper. The analysis (a) reveals the important role of nonequilibrium steady-state (NESS) flux that drives high fidelity, (b) quantifies the error rate of the polymerization reaction as a function of free energy input through sustained non-equilibrium between chemical species, (c) bridges the 'thermodynamic' and 'kinetic' views of specificity and (d) generalizes the theory of kinetic checkpoints and provides it with a sound thermodynamic basis. The underlying mechanism again calls attention to the energy expenditure in heightened biomolecular specificity, a concept first developed by Hopfield and Ninio in the mid-1970s. The mechanism discussed in the present paper is not limited to DNA replication alone; it may be applicable to other biochemical systems.
Collapse
Affiliation(s)
- Field Cady
- Department of Applied Mathematics, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
41
|
Abstract
OBJECTIVE Nucleoside analogs, used against HIV, can be incorporated into a mitochondrial DNA by DNA polymerase gamma. Both the decrease in mitochondrial DNA and increased mutations of mitochondrial DNA may lead to mitochondrial diseases. The tumor suppressor protein p53 exhibits 3' --> 5' exonuclease activity and can provide a proofreading function for DNA polymerases. In the present study, we investigated the ability of p53 to excise incorporated nucleoside analogs from DNA in mitochondria. DESIGN The functional interaction of p53 and DNA polymerase gamma during the incorporation of nucleoside analog was examined in mitochondrial fractions of p53-null H1299 cells, as the source of DNA polymerase gamma. METHODS Primer extension reactions were carried out to elucidate the incorporation and removal of nucleoside analogs. RESULTS The results demonstrate that the excision of incorporated nucleoside analogs in mitochondrial fractions of H1299 cells increased in the presence of purified recombinant p53, or cytoplasmic extracts of large cell carcinoma 2 cells expressing endogenous wild-type p53 (but not specifically predepleted extracts) or cytoplasmic extracts of H1299 cells overexpressing wild-type p53, but not exonuclease-deficient mutant p53-R175H. The amount of nucleoside analogs incorporated into the elongated DNA with mitochondrial fractions of human colon carcinoma 116 (HCT116)(p53+/+) cells was lower than that of HCT116(p53-/-) cells. Furthermore, mitochondrion-localized elevation of p53 in HCT116(p53+/+) cells, following the irradiation-stress stimuli, correlates with the reduction in incorporation of nucleoside analogs and wrong nucleotides. CONCLUSION p53 in mitochondria may functionally interact with DNA polymerase gamma, thus providing a proofreading function during mitochondrial DNA replication for excision of nucleoside analogs and polymerization errors.
Collapse
|
42
|
Abstract
Mitochondrial localization of p53 was observed in stressed and unstressed cells. p53 is involved in DNA repair and apoptosis. It exerts physical and functional interactions with mitochondrial DNA and DNA polymerase gamma (pol gamma). The functional cooperation of p53 and pol gamma during DNA synthesis was examined in the mitochondrial fraction of p53-null H1299 cells, as the source of pol gamma. The results show that p53 may affect the accuracy of DNA synthesis in mitochondria: (1) the excision of a misincorporated nucleotide increases in the presence of (a) recombinant wild-type p53 (wtp53); (b) cytoplasmic fraction of LCC2 cells expressing endogenous wtp53 (but not specifically pre-depleted fraction); (c) cytoplasmic extract of H1299 cells overexpressing wtp53, but not exonuclease-deficient mutant p53-R175H. (2) Mitochondrial extracts of HCT116(p53+/+) cells display higher exonuclease activity compared with that of HCT116(p53-/-) cells. Addition of exogenous p53 complements the HCT116(p53-/-) mitochondrial extract mispair excision. Furthermore, the misincorporation was lower in the mitochondrial fraction of HCT116(p53+/+) cells as compared with that of HCT116(p53-/-) cells. (3) Irradiation-induced mitochondrial translocation of endogenous p53 in HCT116(p53+/+) cells correlates with the enhancement of error-correction activities. Taken together, the data suggest that p53 in mitochondria may be a component of an error-repair pathway and serve as guardian of the mitochondrial genome. The function of p53 in DNA repair and apoptosis is discussed.
Collapse
|
43
|
Sheriff A, Motea E, Lee I, Berdis AJ. Mechanism and dynamics of translesion DNA synthesis catalyzed by the Escherichia coli Klenow fragment. Biochemistry 2008; 47:8527-37. [PMID: 18652487 DOI: 10.1021/bi800324r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translesion DNA synthesis represents the ability of a DNA polymerase to incorporate and extend beyond damaged DNA. In this report, the mechanism and dynamics by which the Escherichia coli Klenow fragment performs translesion DNA synthesis during the misreplication of an abasic site were investigated using a series of natural and non-natural nucleotides. Like most other high-fidelity DNA polymerases, the Klenow fragment follows the "A-rule" of translesion DNA synthesis by preferentially incorporating dATP opposite the noninstructional lesion. However, several 5-substituted indolyl nucleotides lacking classical hydrogen-bonding groups are incorporated approximately 100-fold more efficiently than the natural nucleotide. In general, analogues that contain large substituent groups in conjunction with significant pi-electron density display the highest catalytic efficiencies ( k cat/ K m) for incorporation. While the measured K m values depend upon the size and pi-electron density of the incoming nucleotide, k cat values are surprisingly independent of both biophysical features. As expected, the efficiency by which these non-natural nucleotides are incorporated opposite templating nucleobases is significantly reduced. This reduction reflects minimal increases in K m values coupled with large decreases in k cat values. The kinetic data obtained with the Klenow fragment are compared to that of the high-fidelity bacteriophage T4 DNA polymerase and reveal distinct differences in the dynamics by which these non-natural nucleotides are incorporated opposite an abasic site. These biophysical differences argue against a unified mechanism of translesion DNA synthesis and suggest that polymerases employ different catalytic strategies during the misreplication of damaged DNA.
Collapse
Affiliation(s)
- Asim Sheriff
- Departments of Pharmacology and Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
44
|
Varela MA, Sanmiguel R, Gonzalez-Tizon A, Martinez-Lage A. Heterogeneous nature and distribution of interruptions in dinucleotides may indicate the existence of biased substitutions underlying microsatellite evolution. J Mol Evol 2008; 66:575-80. [PMID: 18496726 DOI: 10.1007/s00239-008-9107-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/20/2008] [Accepted: 04/10/2008] [Indexed: 11/29/2022]
Abstract
Some aspects of microsatellite evolution, such as the role of base substitutions, are far from being fully understood. To examine the significance of base substitutions underlying the evolution of microsatellites we explored the nature and the distribution of interruptions in dinucleotide repeats from the human genome. The frequencies that we inferred in the repetitive sequences were statistically different from the frequencies observed in other noncoding sequences. Additionally, we detected that the interruptions tended to be towards the ends of the microsatellites and 5'-3' asymmetry. In all the estimates nucleotides forming the same repetitive motif seem to be affected by different base substitution rates in AC and AG. This tendency itself could generate patterning and similarity in flanking sequences and reconcile these phenomena with the high mutation rate found in flanking sequences without invoking convergent evolution. Nevertheless, our data suggest that there is a regional bias in the substitution pattern of microsatellites. The accumulation of random substitutions alone cannot explain the heterogeneity and the asymmetry of interruptions found in this study or the relative frequency of different compound microsatellites in the human genome. Therefore, we cannot rule out the possibility of a mutational bias leading to convergent or parallel evolution in flanking sequences.
Collapse
Affiliation(s)
- Miguel A Varela
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidade da Coruña, A Zapateira s/n, E-15071 La Coruña, Spain.
| | | | | | | |
Collapse
|
45
|
Domingo E, Escarmís C, Menéndez-Arias L, Perales C, Herrera M, Novella IS, Holland JJ. Viral Quasispecies: Dynamics, Interactions, and Pathogenesis *. ORIGIN AND EVOLUTION OF VIRUSES 2008. [PMCID: PMC7149507 DOI: 10.1016/b978-0-12-374153-0.00004-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quasispecies theory is providing a solid, evolving conceptual framework for insights into virus population dynamics, adaptive potential, and response to lethal mutagenesis. The complexity of mutant spectra can influence disease progression and viral pathogenesis, as demonstrated using virus variants selected for increased replicative fidelity. Complementation and interference exerted among components of a viral quasispecies can either reinforce or limit the replicative capacity and disease potential of the ensemble. In particular, a progressive enrichment of a replicating mutant spectrum with interfering mutant genomes prompted by enhanced mutagenesis may be a key event in the sharp transition of virus populations into error catastrophe that leads to virus extinction. Fitness variations are influenced by the passage regimes to which viral populations are subjected, notably average fitness decreases upon repeated bottleneck events and fitness gains upon competitive optimization of large viral populations. Evolving viral quasispecies respond to selective constraints by replication of subpopulations of variant genomes that display higher fitness than the parental population in the presence of the selective constraint. This has been profusely documented with fitness effects of mutations associated with resistance of pathogenic viruses to antiviral agents. In particular, selection of HIV-1 mutants resistant to one or multiple antiretroviral inhibitors, and the compensatory effect of mutations in the same genome, offers a compendium of the molecular intricacies that a virus can exploit for its survival. This chapter reviews the basic principles of quasispecies dynamics as they can serve to explain the behavior of viruses.
Collapse
|
46
|
Pursell ZF, Kunkel TA. DNA polymerase epsilon: a polymerase of unusual size (and complexity). PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:101-45. [PMID: 18929140 PMCID: PMC3694787 DOI: 10.1016/s0079-6603(08)00004-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zachary F. Pursell
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| |
Collapse
|
47
|
Liang F, Cho BP. Probing the thermodynamics of aminofluorene-induced translesion DNA synthesis by differential scanning calorimetry. J Am Chem Soc 2007; 129:12108-9. [PMID: 17867689 DOI: 10.1021/ja075271p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fengting Liang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881, USA
| | | |
Collapse
|
48
|
Abstract
Biochemical systems and processes in living cells generally operate far from equilibrium. This review presents an overview of a statistical thermodynamic treatment for such systems, with examples from several key components in cellular signal transduction. Open-system nonequilibrium steady-state (NESS) models are introduced. The models account quantitatively for the energetics and thermodynamics in phosphorylation-dephosphorylation switches, GTPase timers, and specificity amplification through kinetic proofreading. The chemical energy derived from ATP and GTP hydrolysis establishes the NESS of a cell and makes the cell--a mesoscopic-biochemical reaction system that consists of a collection of thermally driven fluctuating macromolecules--a genetically programmed chemical machine.
Collapse
Affiliation(s)
- Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Qian H. Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J Mol Biol 2006; 362:387-92. [PMID: 16934833 DOI: 10.1016/j.jmb.2006.07.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/21/2006] [Accepted: 07/26/2006] [Indexed: 11/16/2022]
Abstract
In living cells, the specificity of biomolecular recognition can be amplified and the noise from non-specific interactions can be reduced at the expense of cellular free energy. This is the seminal idea in the Hopfield-Ninio theory of kinetic proofreading: The specificity is increased via cyclic network kinetics without altering molecular structures and equilibrium affinites. We show a thermodynamic limit of the specificity amplification with a given amount of available free energy. For a normal cell under physiological condition with sustained phosphorylation potential, this gives a factor of 10(10) as the upper bound in specificity amplification. We also study an optimal kinetic network design that is capable of approaching the thermodynamic limit.
Collapse
Affiliation(s)
- Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|