1
|
Li W, Baehr S, Marasco M, Reyes L, Brister D, Pikaard CS, Gout JF, Vermulst M, Lynch M. A Narrow Range of Transcript-error Rates Across the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.02.538944. [PMID: 39868080 PMCID: PMC11761650 DOI: 10.1101/2023.05.02.538944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed. Here, we present a genome-wide analysis of transcript-error rates across the Tree of Life using a modified rolling-circle sequencing method, revealing that the range in error rates is remarkably narrow across diverse species. Transcript errors tend to be randomly distributed, with little evidence supporting local control of error rates associated with gene-expression levels. A majority of transcript errors result in missense errors if translated, and as with a fraction of nonsense transcript errors, these are underrepresented relative to random expectations, suggesting the existence of mechanisms for purging some such errors. To quantitatively understand how natural selection and random genetic drift might shape transcript-error rates across species, we present a model based on cell biology and population genetics, incorporating information on cell volume, proteome size, average degree of exposure of individual errors, and effective population size. However, while this model provides a framework for understanding the evolution of this highly conserved trait, as currently structured it explains only 20% of the variation in the data, suggesting a need for further theoretical work in this area.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305
| | - Stephan Baehr
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michelle Marasco
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Lauren Reyes
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Danielle Brister
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Craig S Pikaard
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biological Sciences, Mississippi State, MS 39762
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
2
|
Gordon MR, Zhu J, Qu V, Li R. A case of convergent-gene interference in the budding yeast knockout library causing chromosome instability. G3 (BETHESDA, MD.) 2021; 11:jkab084. [PMID: 33724427 PMCID: PMC8104933 DOI: 10.1093/g3journal/jkab084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/07/2020] [Indexed: 11/12/2022]
Abstract
To maintain genome stability, organisms depend on faithful chromosome segregation, a process affected by diverse genetic pathways, some of which are not directly linked to mitosis. In this study, we set out to explore one such pathway represented by an undercharacterized gene, SNO1, identified previously in screens of the yeast knockout (YKO) library for mitotic fidelity genes. We found that the causative factor increasing mitotic error rate in the sno1Δ mutant is not loss of the Sno1 protein, but rather perturbation to the mRNA of the neighboring convergent gene, CTF13, encoding an essential component for forming the yeast kinetochore. This is caused by a combination of the Kanamycin resistance gene and the transcriptional terminator used in the YKO library affecting the CTF13 mRNA level and quality . We further provide a list of gene pairs potentially subjected to this artifact, which may be useful for accurate phenotypic interpretation of YKO mutants.
Collapse
Affiliation(s)
- Molly R Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria Qu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
3
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
4
|
Wang X, Okonkwo O, Kebaara BW. Physiological basis of copper tolerance ofSaccharomyces cerevisiaenonsense-mediated mRNA decay mutants. Yeast 2013; 30:179-90. [DOI: 10.1002/yea.2950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xuya Wang
- Department of Biology; Baylor University; Waco; TX; 76798; USA
| | - Obi Okonkwo
- Department of Biology; Baylor University; Waco; TX; 76798; USA
| | | |
Collapse
|
5
|
Copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants. Curr Genet 2011; 57:421-30. [PMID: 21918884 DOI: 10.1007/s00294-011-0356-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
The eukaryotic nonsense-mediated mRNA (NMD) is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons, and importantly some natural mRNAs as well. Natural mRNAs with atypically long 3'-untranslated regions (UTRs) are degraded by NMD in Saccharomyces cerevisiae. A number of S. cerevisiae mRNAs undergo alternative 3'-end processing producing mRNA isoforms that differ in their 3'-UTR lengths. Some of these alternatively 3'-end processed mRNA isoforms have atypically long 3'-UTRs and would be likely targets for NMD-mediated degradation. Here, we investigated the role NMD plays in the regulation of expression of CTR2, which encodes a vacuolar membrane copper transporter. CTR2 pre-mRNA undergoes alternative 3'-end processing to produce two mRNA isoforms with 300-nt and 2-kb 3'-UTRs. We show that both CTR2 mRNA isoforms are differentially regulated by NMD. The regulation of CTR2 mRNA by NMD has physiological consequences, since nmd mutants are more tolerant to toxic levels of copper relative to wild-type yeast cells and the copper tolerance of nmd mutants is dependent on the presence of CTR2.
Collapse
|
6
|
Kebaara BW, Atkin AL. Long 3'-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:2771-8. [PMID: 19270062 PMCID: PMC2685090 DOI: 10.1093/nar/gkp146] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.
Collapse
Affiliation(s)
- Bessie W Kebaara
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | |
Collapse
|
7
|
Chen YH, Su LH, Huang YC, Wang YT, Kao YY, Sun CH. UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia. PLoS One 2008; 3:e3609. [PMID: 18974834 PMCID: PMC2572189 DOI: 10.1371/journal.pone.0003609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/15/2008] [Indexed: 12/03/2022] Open
Abstract
The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp) genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD) system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Chang Huang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Ting Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Yun Kao
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
8
|
Affiliation(s)
- Michael R Culbertson
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
9
|
Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. PLoS Genet 2006; 2:e203. [PMID: 17166056 PMCID: PMC1657058 DOI: 10.1371/journal.pgen.0020203] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd+) and mutant (Nmd−) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% ± 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd− strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are available. Genes determine the structure of proteins through transcription and translation in which an RNA copy of the gene is made (mRNA) and then translated to make the protein. Cellular protein levels reflect the relative rates of mRNA synthesis and degradation, which are subject to multiple layers of controls. Mechanisms also exist to ensure the quality of each mRNA. One quality control mechanism called nonsense-mediated mRNA decay (NMD) triggers the rapid degradation of mRNAs containing coding errors that would otherwise lead to the production of non-functional or potentially deleterious proteins. NMD occurs in yeasts, plants, flies, worms, mice, and humans. In humans, NMD affects the etiology of genetic disorders by affecting the expression of genes that carry disease-causing mutations. Besides quality assurance, NMD plays another role in gene expression by controlling the abundance of hundreds of normal mRNAs that are devoid of coding errors. In this paper, the authors used DNA arrays to monitor the relative decay rates of all mRNAs in budding yeast and found a subset where decay rates were dependent on NMD. Many of the corresponding proteins perform related functional roles affecting both the structure and behavior of chromosomes and the structure and integrity of the cell surface.
Collapse
Affiliation(s)
- Qiaoning Guan
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wei Zheng
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shijie Tang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaosong Liu
- Department of Physics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert A Zinkel
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kam-Wah Tsui
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael R Culbertson
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Kallmeyer AK, Keeling KM, Bedwell DM. Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1378-87. [PMID: 16896221 PMCID: PMC1539132 DOI: 10.1128/ec.00073-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022]
Abstract
Protein synthesis requires a large commitment of cellular resources and is highly regulated. Previous studies have shown that a number of factors that mediate the initiation and elongation steps of translation are regulated by phosphorylation. In this report, we show that a factor involved in the termination step of protein synthesis is also subject to phosphorylation. Our results indicate that eukaryotic release factor 1 (eRF1) is phosphorylated in vivo at serine 421 and serine 432 by the CK2 protein kinase (previously casein kinase II) in the budding yeast Saccharomyces cerevisiae. Phosphorylation of eRF1 has little effect on the efficiency of stop codon recognition or nonsense-mediated mRNA decay. Also, phosphorylation is not required for eRF1 binding to the other translation termination factor, eRF3. In addition, we provide evidence that the putative phosphatase Sal6p does not dephosphorylate eRF1 and that the state of eRF1 phosphorylation does not influence the allosuppressor phenotype associated with a sal6Delta mutation. Finally, we show that phosphorylation of eRF1 is a dynamic process that is dependent upon carbon source availability. Since many other proteins involved in protein synthesis have a CK2 protein kinase motif near their extreme C termini, we propose that this represents a common regulatory mechanism that is shared by factors involved in all three stages of protein synthesis.
Collapse
Affiliation(s)
- Adam K Kallmeyer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
11
|
Ford AS, Guan Q, Neeno-Eckwall E, Culbertson MR. Ebs1p, a negative regulator of gene expression controlled by the Upf proteins in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:301-12. [PMID: 16467471 PMCID: PMC1405902 DOI: 10.1128/ec.5.2.301-312.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in EBS1 were identified in Saccharomyces cerevisiae that cosuppress missense, frameshift, and nonsense mutations. Evidence from studies of loss of function and overexpression of EBS1 suggests that Ebs1p affects gene expression by inhibiting translation and that a loss of EBS1 function causes suppression by increasing the rate of translation. Changes in EBS1 expression levels alter the expression of wild-type genes, but, in general, no changes in mRNA abundance were associated with a loss of function or overexpression of EBS1. Translation of a lacZ reporter was increased in strains carrying an ebs1-Delta mutant gene, whereas translation was decreased when EBS1 was overexpressed. The cap binding protein eIF-4E copurifies with Ebs1p in the absence of RNA, suggesting that the two proteins interact in vivo. Although physical and genetic interactions were detected between Ebs1p and Dcp1p, copurification was RNase sensitive, and changes in the expression of Ebs1p had little to no effect on decapping of the MFA2 transcript. The combined results suggest that Ebs1p inhibits translation, most likely through effects on eIF-4E rather than on decapping. Finally, EBS1 transcript levels are under the control of nonsense-mediated mRNA decay (NMD), providing the first example of an NMD-sensitive transcript whose protein product influences a step in gene expression required for NMD.
Collapse
Affiliation(s)
- Amanda S Ford
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Most of the phenotypic diversity that we perceive in the natural world is directly attributable to the peculiar structure of the eukaryotic gene, which harbors numerous embellishments relative to the situation in prokaryotes. The most profound changes include introns that must be spliced out of precursor mRNAs, transcribed but untranslated leader and trailer sequences (untranslated regions), modular regulatory elements that drive patterns of gene expression, and expansive intergenic regions that harbor additional diffuse control mechanisms. Explaining the origins of these features is difficult because they each impose an intrinsic disadvantage by increasing the genic mutation rate to defective alleles. To address these issues, a general hypothesis for the emergence of eukaryotic gene structure is provided here. Extensive information on absolute population sizes, recombination rates, and mutation rates strongly supports the view that eukaryotes have reduced genetic effective population sizes relative to prokaryotes, with especially extreme reductions being the rule in multicellular lineages. The resultant increase in the power of random genetic drift appears to be sufficient to overwhelm the weak mutational disadvantages associated with most novel aspects of the eukaryotic gene, supporting the idea that most such changes are simple outcomes of semi-neutral processes rather than direct products of natural selection. However, by establishing an essentially permanent change in the population-genetic environment permissive to the genome-wide repatterning of gene structure, the eukaryotic condition also promoted a reliable resource from which natural selection could secondarily build novel forms of organismal complexity. Under this hypothesis, arguments based on molecular, cellular, and/or physiological constraints are insufficient to explain the disparities in gene, genomic, and phenotypic complexity between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
13
|
González CI, Wang W, Peltz SW. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae: a quality control mechanism that degrades transcripts harboring premature termination codons. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:321-8. [PMID: 12762034 DOI: 10.1101/sqb.2001.66.321] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C I González
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico 00931
| | | | | |
Collapse
|
14
|
Abstract
A conserved mRNA surveillance system, referred to as nonsense-mediated decay (NMD), exists in eukaryotic cells to degrade mRNAs containing nonsense codons. This process is important in checking that mRNAs have been properly synthesized and functions, at least in part, to increase the fidelity of gene expression by degrading aberrant mRNAs that, if translated, would produce truncated proteins. Using computational modeling and experimental analysis, we define the alterations in mRNA turnover triggered by NMD in yeast. We demonstrate that the nonsense-containing transcripts are efficiently recognized, targeted for deadenylation-independent decapping, and show NMD triggered accelerated deadenylation regardless of the position of the nonsense codon. We also show that 5' nonsense codons trigger faster rates of decapping than 3' nonsense codons, thereby providing a mechanistic basis for the polar effect of NMD. Finally, we construct a computational model that accurately describes the process of NMD and serves as an explanatory and predictive tool.
Collapse
Affiliation(s)
- Dan Cao
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
15
|
Abstract
In eukaryotes, mRNAs are monitored for errors in gene expression by RNA surveillance where untranslatable mRNAs are selectively degraded by the nonsense-mediated mRNA decay (NMD) pathway. Depending on the organism, three to seven genes are required for NMD. Besides RNA surveillance, the genes required for NMD serve a second purpose by controlling the overall abundance of a substantial fraction of the transcriptome.
Collapse
Affiliation(s)
- Michael R Culbertson
- Robert M Bock Laboratories, 1525 Linden Drive, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
16
|
Abstract
Cell survival depends on the precise and correct production of polypeptides. Eukaryotic cells have evolved conserved proofreading mechanisms to get rid of incomplete and potentially deleterious proteins. The nonsense-mediated mRNA decay (NMD) pathway is an example of a surveillance mechanism that monitors premature translation termination and promotes degradation of aberrant transcripts that code for nonfunctional or even harmful proteins. In this review we will describe our current knowledge of the NMD pathway, analyzing primarily the results obtained from the yeast Saccharomyces cerevisiae, but establishing functional comparisons with those obtained in higher eukaryotes. Based on these observations, we present two related working models to explain how this surveillance pathway recognizes and selectively degrades aberrant mRNAs.
Collapse
Affiliation(s)
- C I González
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
17
|
Pal M, Ishigaki Y, Nagy E, Maquat LE. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA (NEW YORK, N.Y.) 2001; 7:5-15. [PMID: 11214180 PMCID: PMC1370068 DOI: 10.1017/s1355838201000127] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Human Upf1 protein (p), a group 1 RNA helicase, has recently been shown to function in nonsense-mediated mRNA decay (NMD) in mammalian cells. Here, we demonstrate that the estimated 3 x 10(6) copies of hUpf1 p per exponentially growing HeLa cell are essentially equally distributed among polysomal, subpolysomal, and ribosome-free fractions. We also demonstrate that hUpf1p binds RNA and is a phosphoprotein harboring phosphoserine and phosphothreonine. hUpf1p is phosphorylated to the highest extent when polysome-associated and to the lowest extent when ribosome free. We find that serum-induced phosphorylation of hUpf1p is inhibited by wortmannin at a concentration that selectively inhibits PI 3-kinase related kinases and, to a lesser extent, by rapamycin. These and other data suggest that phosphorylation is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. Comparisons are made of hUpf1p to Upf1p and SMG-2, which are the orthologs to hUpf1p in Saccharomyces cerevisiae and Caenorhabditis elegans, respectively.
Collapse
Affiliation(s)
- M Pal
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
18
|
Lelivelt MJ, Culbertson MR. Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. Mol Cell Biol 1999; 19:6710-9. [PMID: 10490610 PMCID: PMC84660 DOI: 10.1128/mcb.19.10.6710] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1999] [Accepted: 06/16/1999] [Indexed: 11/20/2022] Open
Abstract
mRNAs are monitored for errors in gene expression by RNA surveillance, in which mRNAs that cannot be fully translated are degraded by the nonsense-mediated mRNA decay pathway (NMD). RNA surveillance ensures that potentially deleterious truncated proteins are seldom made. NMD pathways that promote surveillance have been found in a wide range of eukaryotes. In Saccharomyces cerevisiae, the proteins encoded by the UPF1, UPF2, and UPF3 genes catalyze steps in NMD and are required for RNA surveillance. In this report, we show that the Upf proteins are also required to control the total accumulation of a large number of mRNAs in addition to their role in RNA surveillance. High-density oligonucleotide arrays were used to monitor global changes in the yeast transcriptome caused by loss of UPF gene function. Null mutations in the UPF genes caused altered accumulation of hundreds of mRNAs. The majority were increased in abundance, but some were decreased. The same mRNAs were affected regardless of which of the three UPF gene was inactivated. The proteins encoded by UPF-dependent mRNAs were broadly distributed by function but were underrepresented in two MIPS (Munich Information Center for Protein Sequences) categories: protein synthesis and protein destination. In a UPF(+) strain, the average level of expression of UPF-dependent mRNAs was threefold lower than the average level of expression of all mRNAs in the transcriptome, suggesting that highly abundant mRNAs were underrepresented. We suggest a model for how the abundance of hundreds of mRNAs might be controlled by the Upf proteins.
Collapse
Affiliation(s)
- M J Lelivelt
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
19
|
Hilleren P, Parker R. mRNA surveillance in eukaryotes: kinetic proofreading of proper translation termination as assessed by mRNP domain organization? RNA (NEW YORK, N.Y.) 1999; 5:711-9. [PMID: 10376871 PMCID: PMC1369798 DOI: 10.1017/s1355838299990519] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last few years it has become clear that a conserved mRNA degradation system, referred to as mRNA surveillance, exists in eukaryotic cells to degrade aberrant mRNAs. This process plays an important role in checking that mRNAs have been properly synthesized and functions, at least in part, to increase the fidelity of gene expression by degrading aberrant mRNAs that, if translated, would produce truncated proteins. A critical issue is how normal and aberrant mRNAs are distinguished and how that distinction leads to differences in mRNA stability. Recent results suggest a model with three main points. First, mRNPs have a domain organization that is, in part, a reflection of the completion of nuclear pre-mRNA processing events. Second, the critical aspect of distinguishing a normal from an aberrant mRNA is the environment of the translation termination codon as determined by the organization of the mRNP domains. Third, the cell distinguishes proper from improper termination through an internal clock that is the rate of ATP hydrolysis by Upf1p. If termination is completed before ATP hydrolysis, the mRNA is protected from mRNA degradation. Conversely, if termination is slow, then ATP hydrolysis and a structural rearrangement occurs before termination is completed, which affects the fate of the terminating ribosome in a manner that fails to stabilize the mRNA. This proposed system of distinguishing normal from aberrant transcripts is similar to, but distinct from other systems of kinetic proofreading that affect the accuracy of other biogenic processes such as translation accuracy and spliceosome assembly.
Collapse
Affiliation(s)
- P Hilleren
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
20
|
Culbertson MR. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet 1999; 15:74-80. [PMID: 10098411 DOI: 10.1016/s0168-9525(98)01658-8] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Messenger RNAs are monitored for errors that arise during gene expression by a mechanism called RNA surveillance, with the result that most mRNAs that cannot be translated along their full length are rapidly degraded. This ensures that truncated proteins are seldom made, reducing the accumulation of rogue proteins that might be deleterious. The pathway leading to accelerated mRNA decay is referred to as nonsense-mediated mRNA decay (NMD). The proteins that catalyze steps in NMD in yeast serve two roles, one to monitor errors in gene expression and the other to control the abundance of endogenous wild-type mRNAs as part of the normal repertoire of gene expression. The NMD pathway has a direct impact on hundreds of genetic disorders in the human population, where about a quarter of all known mutations are predicted to trigger NMD.
Collapse
Affiliation(s)
- M R Culbertson
- Laboratory of Genetics, R.M. Bock Laboratories, University of Wisconsin, Madison 53706, USA.
| |
Collapse
|