1
|
Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration. Mol Cell Biol 2016; 36:1064-77. [PMID: 26787838 DOI: 10.1128/mcb.00770-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Here we show that decreased expression of histones or a defect in nucleosome assembly in the yeast Saccharomyces cerevisiae results in increased mitochondrial DNA (mtDNA) copy numbers, oxygen consumption, ATP synthesis, and expression of genes encoding enzymes of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). The metabolic shift from fermentation to respiration induced by altered chromatin structure is associated with the induction of the retrograde (RTG) pathway and requires the activity of the Hap2/3/4/5p complex as well as the transport and metabolism of pyruvate in mitochondria. Together, our data indicate that altered chromatin structure relieves glucose repression of mitochondrial respiration by inducing transcription of the TCA cycle and OXPHOS genes carried by both nuclear and mitochondrial DNA.
Collapse
|
2
|
The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 2014; 34:1547-63. [PMID: 24550006 DOI: 10.1128/mcb.01060-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.
Collapse
|
3
|
Kurat CF, Recht J, Radovani E, Durbic T, Andrews B, Fillingham J. Regulation of histone gene transcription in yeast. Cell Mol Life Sci 2014; 71:599-613. [PMID: 23974242 PMCID: PMC11113579 DOI: 10.1007/s00018-013-1443-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Histones are the primary protein component of chromatin, the mixture of DNA and proteins that packages the genetic material in eukaryotes. Large amounts of histones are required during the S phase of the cell cycle when genome replication occurs. However, ectopic expression of histones during other cell cycle phases is toxic; thus, histone expression is restricted to the S phase and is tightly regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational. In this review, we discuss mechanisms of regulation of histone gene expression with emphasis on the transcriptional regulation of the replication-dependent histone genes in the model yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christoph F. Kurat
- The Donnelly Center, University of Toronto, Toronto, ON M5S 3E1 Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1 Canada
| | | | - Ernest Radovani
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| | - Tanja Durbic
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| | - Brenda Andrews
- The Donnelly Center, University of Toronto, Toronto, ON M5S 3E1 Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| |
Collapse
|
4
|
The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 2009; 28:3378-89. [PMID: 19745812 DOI: 10.1038/emboj.2009.270] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF- and MBF-regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature-sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.
Collapse
|
5
|
16 High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36016-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Milgrom E, West RW, Gao C, Shen WCW. TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele. Genetics 2005; 171:959-73. [PMID: 16118188 PMCID: PMC1456853 DOI: 10.1534/genetics.105.046557] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAF9 is a TATA-binding protein associated factor (TAF) conserved from yeast to humans and shared by two transcription coactivator complexes, TFIID and SAGA. The essentiality of the TAFs has made it difficult to ascertain their roles in TFIID and SAGA function. Here we performed a genomic synthetic genetic array analysis using a temperature-sensitive allele of TAF9 as a query. Results from this experiment showed that TAF9 interacts genetically with: (1) genes for multiple transcription factor complexes predominantly involving Mediator, chromatin modification/remodeling complexes, and regulators of transcription elongation; (2) virtually all nonessential genes encoding subunits of the SWR-C chromatin-remodeling complex and both TAF9 and SWR-C required for expressing the essential housekeeping gene RPS5; and (3) key genes for cell cycle control at the G1/S transition, as well as genes involved in cell polarity, cell integrity, and protein synthesis, suggesting a link between TAF9 function and cell growth control. We also showed that disruption of SAGA by deletion of SPT20 alters histone-DNA contacts and phosphorylated forms of RNA polymerase II at coding sequences. Our results raise the possibility of an unappreciated role for TAF9 in transcription elongation, perhaps in the context of SAGA, and provide further support for TAF9 involvement in cell cycle progression and growth control.
Collapse
Affiliation(s)
- Elena Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
7
|
Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 2004; 117:899-913. [PMID: 15210111 DOI: 10.1016/j.cell.2004.05.024] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 11/26/2022]
Abstract
Cyclin-dependent kinase (CDK) activity initiates the eukaryotic cell division cycle by turning on a suite of gene expression in late G1 phase. In metazoans, CDK-dependent phosphorylation of the retinoblastoma tumor suppressor protein (Rb) alleviates repression of E2F and thereby activates G1/S transcription. However, in yeast, an analogous G1 phase target of CDK activity has remained elusive. Here we show that the cell size regulator Whi5 inhibits G1/S transcription and that this inhibition is relieved by CDK-mediated phosphorylation. Deletion of WHI5 bypasses the requirement for upstream activators of the G1/S transcription factors SBF/MBF and thereby accelerates the G1/S transition. Whi5 is recruited to G1/S promoter elements via its interaction with SBF/MBF in vivo and in vitro. In late G1 phase, CDK-dependent phosphorylation dissociates Whi5 from SBF and drives Whi5 out of the nucleus. Elimination of CDK activity at the end of mitosis allows Whi5 to reenter the nucleus to again repress G1/S transcription. These findings harmonize G1/S control in eukaryotes.
Collapse
Affiliation(s)
- Michael Costanzo
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Taneda T, Kikuchi A. Genetic analysis of RSC58, which encodes a component of a yeast chromatin remodeling complex, and interacts with the transcription factor Swi6. Mol Genet Genomics 2004; 271:479-89. [PMID: 15034784 DOI: 10.1007/s00438-004-0999-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/20/2004] [Indexed: 11/26/2022]
Abstract
Before transcription can begin, the chromatin structure must be rearranged at the nucleosome level. In yeast the nucleosome remodeling complex RSC is involved in this process and it is essential for growth. Recent analysis of the RSC by mass spectrometry has suggested that the product of YLR033w, an essential gene of unknown function, is a novel component of the complex, and the gene has been renamed RSC58. Rsc58 is predicted to be 502 amino acids long. We have isolated five temperature-sensitive mutations in RSC58 and studied the cellular function of the gene. Our major findings are the following. (1) Two of the alleles have a frameshift mutation near the 3' end of the gene, in codons 482 and 485, respectively. The first mutation is associated with the more severe phenotype. This is compatible with the finding that removal of the C-terminal 25 residues of Rsc58 is lethal to cells. These results suggest that C-terminal region is essential for Rsc58 function. (2) RSC4, which codes for another member of the RSC, was found to be a multicopy suppressor of the phenotype of one of the temperature-sensitive mutants. (3) Two-hybrid analysis identified Swi6, a transcription factor, as a candidate interactor with Rsc58. An interaction between Rsc58 and Swi6 is also suggested by the fact that rsc58-ts Deltaswi6 double mutants show a more severe growth defect than either mutation alone. These results suggest the possibility that Rsc58 mediates between nucleosome remodeling and the initiation of transcription.
Collapse
Affiliation(s)
- T Taneda
- Division of Molecular Mycology and Medicine, Center for Neural Disease and Cancer, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, 466-8550 Nagoya, Japan
| | | |
Collapse
|
9
|
Costanzo M, Schub O, Andrews B. G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol 2003; 23:5064-77. [PMID: 12832490 PMCID: PMC162210 DOI: 10.1128/mcb.23.14.5064-5077.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 03/14/2003] [Accepted: 04/10/2003] [Indexed: 01/13/2023] Open
Abstract
Stage-specific transcriptional programs are an integral feature of cell cycle regulation. In the budding yeast Saccharomyces cerevisiae, over 120 genes are coordinately induced in late G(1) phase by two heterodimeric transcription factors called SBF and MBF. Activation of SBF and MBF is an upstream initiator of key cell cycle events, including budding and DNA replication. SBF and MBF regulation is complex and genetically redundant, and the precise mechanism of G(1) transcriptional activation is unclear. Assays using SBF- and MBF-specific reporter genes revealed that the STB1 gene specifically affected MBF-dependent transcription. STB1 encodes a known Swi6-binding protein, but an MBF-specific function had not been previously suspected. Consistent with a specific role in regulating MBF, a STB1 deletion strain requires SBF for viability and microarray studies show a decrease in MBF-regulated transcripts in a swi4Delta mutant following depletion of Stb1. Chromatin immunoprecipitation experiments confirm that Stb1 localizes to promoters of MBF-regulated genes. Our data indicate that, contrary to previous models, MBF and SBF have unique components and might be distinctly regulated.
Collapse
Affiliation(s)
- Michael Costanzo
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
10
|
Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 2002; 22:4723-38. [PMID: 12052880 PMCID: PMC133885 DOI: 10.1128/mcb.22.13.4723-4738.2002] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2002] [Revised: 02/13/2002] [Accepted: 03/27/2002] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIID is a multisubunit complex of TATA-binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). Although TFIID constituents are required for transcription initiation of most mRNA encoding genes, the mechanism of TFIID action remains unclear. To gain insight into TFIID function, we sought to generate a proteomic catalogue of proteins specifically interacting with TFIID subunits. Toward this end, TFIID was systematically immunopurified by using polyclonal antibodies directed against each subunit, and the constellation of TBP- and TAF-associated proteins was directly identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. A number of novel protein-protein associations were observed, and several were characterized in detail. These interactions include association between TBP and the RSC chromatin remodeling complex, the TAF17p-dependent association of the Swi6p transactivator protein with TFIID, and the identification of three novel subunits of the SAGA acetyltransferase complex, including a putative ubiquitin-specific protease component. Our results provide important new insights into the mechanisms of mRNA gene transcription and demonstrate the feasibility of constructing a complete proteomic interaction map of the eukaryotic transcription apparatus.
Collapse
Affiliation(s)
- Steven L Sanders
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
11
|
Durso RJ, Fisher AK, Albright-Frey TJ, Reese JC. Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription. Mol Cell Biol 2001; 21:7331-44. [PMID: 11585915 PMCID: PMC99907 DOI: 10.1128/mcb.21.21.7331-7344.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast TAF90p is a component of at least two transcription regulatory complexes, the general transcription factor TFIID and the Spt-Ada-Gcn5 histone acetyltransferase complex (SAGA). Broad transcription defects have been observed in mutants of other TAF(II)s shared by TFIID and SAGA but not in the only two TAF90 mutants isolated to date. Given that the numbers of mutants analyzed thus far are small, we isolated and characterized 11 temperature-sensitive mutants of TAF90 and analyzed their effects on transcription and integrity of the TFIID and SAGA complexes. We found that the mutants displayed a variety of allele-specific defects in their ability to support transcription and maintain the structure of the TFIID and SAGA complexes. Sequencing of the alleles revealed that all have mutations corresponding to the C terminus of the protein, with most clustering within the conserved WD40 repeats; thus, the C terminus of TAF90p is required for its incorporation into TFIID and function in SAGA. Significantly, inactivation of one allele, taf90-20, caused the dramatic reduction in the levels of total mRNA and most specific transcripts analyzed. Analysis of the structure and/or activity of both TAF90p-containing complexes revealed that this allele is the most disruptive of all. Our analysis defines the requirement for the WD40 repeats in preserving TFIID and SAGA function, demonstrates that the defects associated with distinct mutations in TAF90 vary considerably, and indicates that TAF90 can be classified as a gene required for the transcription of a large number of genes.
Collapse
Affiliation(s)
- R J Durso
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | |
Collapse
|
12
|
Kirchner J, Sanders SL, Klebanow E, Weil PA. Molecular genetic dissection of TAF25, an essential yeast gene encoding a subunit shared by TFIID and SAGA multiprotein transcription factors. Mol Cell Biol 2001; 21:6668-80. [PMID: 11533254 PMCID: PMC99812 DOI: 10.1128/mcb.21.19.6668-6680.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have performed a systematic structure-function analysis of Saccharomyces cerevisiae TAF25, an evolutionarily conserved, single-copy essential gene which encodes the 206-amino-acid TAF25p protein. TAF25p is an integral subunit of both the 15-subunit general transcription factor TFIID and the multisubunit, chromatin-acetylating transcriptional coactivator SAGA. We used hydroxylamine mutagenesis, targeted deletion, alanine-scanning mutagenesis, high-copy suppression methods, and two-hybrid screening to dissect TAF25. Temperature-sensitive mutant strains generated were used for coimmunoprecipitation and transcription analyses to define the in vivo functions of TAF25p. The results of these analyses show that TAF25p is comprised of multiple mutable elements which contribute importantly to RNA polymerase II-mediated mRNA gene transcription.
Collapse
Affiliation(s)
- J Kirchner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
13
|
Abstract
In yeast, inactivation of certain TBP-associated factors (TAF(II)s) results in arrest at specific stages of the cell cycle. In some cases, cell cycle arrest is not observed because overlapping defects in other cellular processes precludes the manifestation of an arrest phenotype. In the latter situation, genetic analysis has the potential to reveal the involvement of TAF(II)s in cell cycle regulation. In this report, a temperature-sensitive mutant of TAF68/61 was used to screen for high-copy dosage suppressors of its growth defect. Ten genes were isolated: TAF suppressor genes, TSGs 1-10. Remarkably, most TSGs have either a genetic or a direct link to control of the G(2)/M transition. Moreover, eight of the 10 TSGs can suppress a CDC28 mutant specifically defective for mitosis (cdc28-1N) but not an allele defective for passage through start. The identification of these genes as suppressors of cdc28-1N has identified four unreported suppressors of this allele. Moreover, synthetic lethality is observed between taf68-9 and cdc28-1N. The isolation of multiple genes involved in the control of a specific phase of the cell cycle argue that the arrest phenotypes of certain TAF(II) mutants reflect their role in specifically regulating cell cycle functions.
Collapse
Affiliation(s)
- J C Reese
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
14
|
Kraemer SM, Ranallo RT, Ogg RC, Stargell LA. TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol Cell Biol 2001; 21:1737-46. [PMID: 11238911 PMCID: PMC86722 DOI: 10.1128/mcb.21.5.1737-1746.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.
Collapse
Affiliation(s)
- S M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|