1
|
Law S, Park H, Shany E, Sandhu S, Vallabhaneni M, Meyer D. Expression of human BRCA2 in Saccharomyces cerevisiae complements the loss of RAD52 in double-strand break repair. Curr Genet 2023; 69:301-308. [PMID: 37934232 DOI: 10.1007/s00294-023-01278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
BRCA2 is a tumor-suppressor gene that is normally expressed in the breast and ovarian tissue of mammals. The BRCA2 protein mediates the repair of double-strand breaks (DSBs) using homologous recombination, which is a conserved pathway in eukaryotes. Women who express missense mutations in the BRCA2 gene are predisposed to an elevated lifetime risk for both breast cancer and ovarian cancer. In the present study, the efficiency of human BRCA2 (hBRCA2) in DSB repair was investigated in the budding yeast Saccharomyces cerevisiae. While budding yeast does not possess a true BRCA2 homolog, they have a potential functional homolog known as Rad52, which is an essential repair protein involved in mediating homologous recombination using the same mechanism as BRCA2 in humans. Therefore, to examine the functional overlap between Rad52 in yeast and hBRCA2, we expressed the wild-type hBRCA2 gene in budding yeast with or without Rad52 and monitored ionizing radiation resistance and DSB repair efficiency. We found that the expression of hBRCA2 in rad52 mutants increases both radiation resistance and DSB repair frequency compared to cells not expressing BRCA2. Specifically, BRCA2 improved the protection against ionizing radiation by at least 1.93-fold and the repair frequency by 6.1-fold. In addition, our results show that homology length influences repair efficiency in rad52 mutant cells, which impacts BRCA2 mediated repair of DSBs. This study provides evidence that S. cerevisiae could be used to monitor BRCA2 function, which can help in understanding the genetic consequences of BRCA2 variants and how they may contribute to cancer progression.
Collapse
Affiliation(s)
- Sherrice Law
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | - Hannah Park
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | - Eyar Shany
- Columbia University, New York, NY, 10027, USA
| | - Sumer Sandhu
- University of Tennessee College of Medicine, Memphis, TN, 38163, USA
| | - Mayukha Vallabhaneni
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, 95670, USA
| | - Damon Meyer
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, 95670, USA.
| |
Collapse
|
2
|
Lassègue B, Kumar S, Mandavilli R, Wang K, Tsai M, Kang DW, Demos C, Hernandes MS, San Martín A, Taylor WR, Jo H, Griendling KK. Characterization of Poldip2 knockout mice: Avoiding incorrect gene targeting. PLoS One 2021; 16:e0247261. [PMID: 34928942 PMCID: PMC8687530 DOI: 10.1371/journal.pone.0247261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023] Open
Abstract
POLDIP2 is a multifunctional protein whose roles are only partially understood. Our laboratory previously reported physiological studies performed using a mouse gene trap model, which suffered from three limitations: perinatal lethality in homozygotes, constitutive Poldip2 inactivation and inadvertent downregulation of the adjacent Tmem199 gene. To overcome these limitations, we developed a new conditional floxed Poldip2 model. The first part of the present study shows that our initial floxed mice were affected by an unexpected mutation, which was not readily detected by Southern blotting and traditional PCR. It consisted of a 305 kb duplication around Poldip2 with retention of the wild type allele and could be traced back to the original targeted ES cell clone. We offer simple suggestions to rapidly detect similar accidents, which may affect genome editing using both traditional and CRISPR-based methods. In the second part of the present study, correctly targeted floxed Poldip2 mice were generated and used to produce a new constitutive knockout line by crossing with a Cre deleter. In contrast to the gene trap model, many homozygous knockout mice were viable, in spite of having no POLDIP2 expression. To further characterize the effects of Poldip2 ablation in the vasculature, RNA-seq and RT-qPCR experiments were performed in constitutive knockout arteries. Results show that POLDIP2 inactivation affects multiple cellular processes and provide new opportunities for future in-depth study of its functions.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rohan Mandavilli
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Keke Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Michelle Tsai
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Marina S. Hernandes
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Alejandra San Martín
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - W. Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Division of Cardiology, Atlanta VA Medical Center, Decatur, GA, United States of America
| | - Hanjoong Jo
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kathy K. Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
3
|
Mehta A, Beach A, Haber JE. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. Mol Cell 2017; 65:515-526.e3. [PMID: 28065599 DOI: 10.1016/j.molcel.2016.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/27/2016] [Accepted: 12/01/2016] [Indexed: 11/27/2022]
Abstract
Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HMLα donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is ≤150 bp, efficient repair depends on the recombination enhancer, which tethers HMLα near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is ≤150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR.
Collapse
Affiliation(s)
- Anuja Mehta
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Annette Beach
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
4
|
Izmiryan A, Basmaciogullari S, Henry A, Paques F, Danos O. Efficient gene targeting mediated by a lentiviral vector-associated meganuclease. Nucleic Acids Res 2011; 39:7610-9. [PMID: 21715375 PMCID: PMC3177226 DOI: 10.1093/nar/gkr524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene targeting can be achieved with lentiviral vectors delivering donor sequences along with a nuclease that creates a locus-specific double-strand break (DSB). Therapeutic applications of this system would require an appropriate control of the amount of endonuclease delivered to the target cells, and potentially toxic sustained expression must be avoided. Here, we show that the nuclease can be transferred into cells as a protein associated with a lentiviral vector particle. I-SceI, a prototypic meganuclease from yeast, was incorporated into the virions as a fusion with Vpr, an HIV accessory protein. Integration-deficient lentiviral vectors containing the donor sequences and the I-SceI fusion protein were tested in reporter cells in which targeting events were scored by the repair of a puromycin resistance gene. Molecular analysis of the targeted locus indicated a 2-fold higher frequency of the expected recombination event when the nuclease was delivered as a protein rather than encoded by a separate vector. In both systems, a proportion of clones displayed multiple integrated copies of the donor sequences, either as tandems at the targeted locus or at unrelated loci. These integration patterns were dependent upon the mode of meganuclease delivery, suggesting distinct recombination processes.
Collapse
Affiliation(s)
- Araksya Izmiryan
- Hôpital Necker-Enfants Malades, Université Paris Descartes, 75743 Paris, France
| | | | | | | | | |
Collapse
|
5
|
Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci U S A 2011; 108:3108-15. [PMID: 21292986 DOI: 10.1073/pnas.1019660108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination--specifically, by gene conversion--using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion.
Collapse
|
6
|
Abstract
Initial events in double-strand break repair by homologous recombination in vivo involve homology searching, 3' strand invasion, and new DNA synthesis. While studies in yeast have contributed much to our knowledge of these processes, in comparison, little is known of the early events in the integrated mammalian system. In this study, a sensitive PCR procedure was developed to detect the new DNA synthesis that accompanies mammalian homologous recombination. The test system exploits a well-characterized gene targeting assay in which the transfected vector bears a gap in the region of homology to the single-copy chromosomal immunoglobulin mu heavy chain gene in mouse hybridoma cells. New DNA synthesis primed by invading 3' vector ends copies chromosomal mu-gene template sequences excluded by the vector-borne double-stranded gap. Following electroporation, specific 3' extension products from each vector end are detected with rapid kinetics: they appear after 0.5 hr, peak at 3-6 hr, and then decline, likely as a result of the combined effects of susceptibility to degradation and cell division. New DNA synthesis from each vector 3' end extends at least approximately 1000 nucleotides into the gapped region, but the efficiency declines markedly within the first approximately 200 nucleotides. Over this short distance, an average frequency of 3' extension for the two invading vector ends is approximately 0.007 events/vector backbone. DNA sequencing reveals precise copying of the cognate chromosomal mu-gene template. In unsynchronized cells, 3' extension is sensitive to aphidicolin supporting involvement of a replicative polymerase. Analysis suggests that the vast majority of 3' extensions reside on linear plasmid molecules.
Collapse
|
7
|
Mangerich A, Scherthan H, Diefenbach J, Kloz U, van der Hoeven F, Beneke S, Bürkle A. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res 2008; 18:261-79. [PMID: 19034683 DOI: 10.1007/s11248-008-9228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 10/31/2008] [Indexed: 01/15/2023]
Abstract
Here we report an approach to generate a knock-in mouse model using an 'ends-out' gene replacement vector to substitute the murine Parp-1 (mParp-1) coding sequence (32 kb) with its human orthologous sequence (46 kb). Unexpectedly, examination of mutant ES cell clones and mice revealed that site-specific homologous recombination was mimicked in three independently generated ES cell clones by bidirectional extension of the vector homology arms using the endogenous mParp-1-flanking sequences as templates. This was followed by adjacent integration of the targeting vector, thus leaving the endogenous mParp-1 locus functional. A related phenomenon termed 'ectopic gene targeting' has so far only been described for 'ends-in' integration-type vectors in non-ES cell gene targeting. We provide reliable techniques to detect such ectopic gene targeting which represents an unexpected caveat in mouse genetic engineering that should be considered in the design and validation strategy of future gene knock-in approaches.
Collapse
Affiliation(s)
- Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Box X911, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Read LR, Raynard SJ, Rukść A, Baker MD. Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Res 2004; 32:1184-96. [PMID: 14978260 PMCID: PMC373412 DOI: 10.1093/nar/gkh280] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 01/17/2023] Open
Abstract
Homologous recombination (HR) is important in repairing errors of replication and other forms of DNA damage. In mammalian cells, potential templates include the homologous chromosome, and after DNA replication, the sister chromatid. Previous work has shown that the mammalian recombination machinery is organized to suppress interchromosomal recombination while preserving intrachromosomal HR. In the present study, we investigated spontaneous intrachromosomal HR in mouse hybridoma cell lines in which variously numbered tandem repeats of the mu heavy chain constant (C mu) region reside at the haploid, chromosomal immunoglobulin mu heavy chain locus. This organization provides the opportunity to investigate recombination between homologous gene repeats in a well-defined chromosomal locus under conditions in which recombinants are conveniently recovered. This system revealed several features about the mammalian intrachromosomal HR process: (i) the frequency of HR was high (recombinants represented as much as several percent of the total of recombinants and non-recombinants); (ii) the recombination process appeared to be predominantly non-reciprocal, consistent with the possibility of gene conversion; (iii) putative gene conversion tracts were long (up to 13.4 kb); (iv) the recombination process occurred with precision, initiating and terminating within regions of shared homology. The results are discussed with respect to mammalian intrachromosomal HR involving interactions both within and between sister chromatids.
Collapse
Affiliation(s)
- Leah R Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|