1
|
Park J, Kim H, Gestaut D, Lim S, Opoku-Nsiah KA, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. Nat Commun 2024; 15:1007. [PMID: 38307855 PMCID: PMC10837153 DOI: 10.1038/s41467-024-45242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | | | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Judith Frydman
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Wethekam LC, Moore JK. α-tubulin regulation by 5' introns in Saccharomyces cerevisiae. Genetics 2023; 225:iyad163. [PMID: 37675603 PMCID: PMC10697811 DOI: 10.1093/genetics/iyad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
Across eukaryotic genomes, multiple α- and β-tubulin genes require regulation to ensure sufficient production of tubulin heterodimers. Features within these gene families that regulate expression remain underexplored. Here, we investigate the role of the 5' intron in regulating α-tubulin expression in Saccharomyces cerevisiae. We find that the intron in the α-tubulin, TUB1, promotes α-tubulin expression and cell fitness during microtubule stress. The role of the TUB1 intron depends on proximity to the TUB1 promoter and sequence features that are distinct from the intron in the alternative α-tubulin isotype, TUB3. These results lead us to perform a screen to identify genes that act with the TUB1 intron. We identified several genes involved in chromatin remodeling, α/β-tubulin heterodimer assembly, and the spindle assembly checkpoint. We propose a model where the TUB1 intron promotes expression from the chromosomal locus and that this may represent a conserved mechanism for tubulin regulation under conditions that require high levels of tubulin production.
Collapse
Affiliation(s)
- Linnea C Wethekam
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Park J, Kim H, Gestaut D, Lim S, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534239. [PMID: 37016670 PMCID: PMC10071816 DOI: 10.1101/2023.03.25.534239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate the folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. In the open TRiC state, PhLP2A binds to the chamber's equator while its N-terminal H3-domain binds to the apical domains of CCT3/4, thereby displacing PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to the positively charged inner surfaces formed by CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Judith Frydman
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
- Dept of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
5
|
Kumar V, Behl A, Shoaib R, Abid M, Shevtsov M, Singh S. Comparative structural insight into prefoldin subunints of archaea and eukaryotes with special emphasis on unexplored prefoldin of Plasmodium falciparum. J Biomol Struct Dyn 2020; 40:3804-3818. [PMID: 33272134 DOI: 10.1080/07391102.2020.1850527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Prefoldin (PFD) is a heterohexameric molecular chaperone which bind unfolded proteins and subsequently deliver them to a group II chaperonin for correct folding. Although there is structural and functional information available for humans and archaea PFDs, their existence and functions in malaria parasite remains uncharacterized. In the present review, we have collected the available information on prefoldin family members of archaea and humans and attempted to analyze unexplored PFD subunits of Plasmodium falciparum (Pf). Our review enhances the understanding of probable functions, structure and mechanism of substrate binding of Pf prefoldin by comparing with the available information of its homologs in archaea and H. sapiens. Three PfPFD out of six and a Pf prefoldin-like protein are reported to be essential for parasite survival that signifies their importance in malaria parasite biology. Transcriptome analyses suggest that PfPFD subunits are up-regulated at the mRNA level during asexual and sexual stages of parasite life cycle. Our in silico analysis suggested several pivotal proteins like myosin E, cytoskeletal protein (tubulin), merozoite surface protein and ring exported protein 3 as their interacting partners. Based on structural information of archaeal and H. sapiens PFDs, P. falciparum counterparts have been modelled and key interface residues were identified that are critical for oligomerization of PfPFD subunits. We collated information on PFD-substrate binding and PFD-chaperonin interaction in detail to understand the mechanism of substrate delivery in archaea and humans. Overall, our review enables readers to view the PFD family comprehensively. Communicated by Ramaswamy H. SarmaAbbreviations: HSP: Heat shock proteins; CCT: Chaperonin containing TCP-1; PFD: Prefoldin; PFLP: Prefoldin like protein; PfPFD: Plasmodium falciparum prefoldin; Pf: Plasmodium falciparum; H. sapiens: Homo sapiens; M. thermoautotrophicus: Methanobacterium thermoautotrophicus; P. horikoshii: Pyrococcus horikoshii.
Collapse
Affiliation(s)
- Vikash Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Maxim Shevtsov
- Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Radiation Immuno Oncology group, Klinikum rechts der Isar, Munich, Germany.,Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Department of General Surgery, Pavlov First Saint Petersburg State Medical University, Petersburg, Russia.,Almazov National Medical Research Centre, Polenov Russian Scientific Research Institute of Neurosurgery, St. Petersburg, Russia.,National Center for Neurosurgery, Nur-Sultan, Kazakhstan.,Department of Biomedical Cell Technologies, Far Eastern Federal University, Vladivostok, Russia
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Kumar V, Rumaisha, Behl A, Munjal A, Abid M, Singh S. Prefoldin subunit 6 of Plasmodium falciparum binds merozoite surface protein-1 (MSP-1). FEBS Open Bio 2020; 12:1050-1060. [PMID: 33145997 PMCID: PMC9063436 DOI: 10.1002/2211-5463.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
Malaria is a human disease caused by eukaryotic protozoan parasites of the Plasmodium genus. Plasmodium falciparum (Pf) causes the most lethal form of human malaria and is responsible for widespread mortality worldwide. Prefoldin is a heterohexameric molecular complex that binds and delivers unfolded proteins to chaperonin for correct folding. The prefoldin PFD6 is predicted to interact with merozoite surface protein‐1 (MSP‐1), a protein well known to play a pivotal role in erythrocyte binding and invasion by Plasmodium merozoites. We previously found that the P. falciparum (Pf) genome contains six prefoldin genes and a prefoldin‐like gene whose molecular functions are unidentified. Here, we analyzed the expression of PfPFD‐6 during the asexual blood stages of the parasite and investigated its interacting partners. PfPFD‐6 was found to be significantly expressed at the trophozoite and schizont stages. Pull‐down assays suggest PfPFD‐6 interacts with MSP‐1. In silico analysis suggested critical residues involved in the PfPFD‐6‐MSP‐1 interaction. Our data suggest PfPFD‐6 may play a role in stabilizing or trafficking MSP‐1.
Collapse
Affiliation(s)
- Vikash Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha
- Medicinal Chemistry laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Li G, Moore JK. Microtubule dynamics at low temperature: evidence that tubulin recycling limits assembly. Mol Biol Cell 2020; 31:1154-1166. [PMID: 32213119 PMCID: PMC7353160 DOI: 10.1091/mbc.e19-11-0634] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How temperature specifically affects microtubule dynamics and how these lead to changes in microtubule networks in cells have not been established. We investigated these questions in budding yeast, an organism found in diverse environments and therefore predicted to exhibit dynamic microtubules across a broad temperature range. We measured the dynamics of GFP-labeled microtubules in living cells and found that lowering temperature from 37°C to 10°C decreased the rates of both polymerization and depolymerization, decreased the amount of polymer assembled before catastrophes, and decreased the frequency of microtubule emergence from nucleation sites. Lowering to 4°C caused rapid loss of almost all microtubule polymer. We provide evidence that these effects on microtubule dynamics may be explained in part by changes in the cofactor-dependent conformational dynamics of tubulin proteins. Ablation of tubulin-binding cofactors (TBCs) further sensitizes cells and their microtubules to low temperatures, and we highlight a specific role for TBCB/Alf1 in microtubule maintenance at low temperatures. Finally, we show that inhibiting the maturation cycle of tubulin by using a point mutant in β-tubulin confers hyperstable microtubules at low temperatures and rescues the requirement for TBCB/Alf1 in maintaining microtubule polymer at low temperatures. Together, these results reveal an unappreciated step in the tubulin cycle.
Collapse
Affiliation(s)
- Gabriella Li
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
8
|
Bergendahl LT, Gerasimavicius L, Miles J, Macdonald L, Wells JN, Welburn JPI, Marsh JA. The role of protein complexes in human genetic disease. Protein Sci 2019; 28:1400-1411. [PMID: 31219644 DOI: 10.1002/pro.3667] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Many human genetic disorders are caused by mutations in protein-coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant-negative mechanism, whereby mutated subunits can disrupt the activity of wild-type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes.
Collapse
Affiliation(s)
- L Therese Bergendahl
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jamilla Miles
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lewis Macdonald
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14850
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
9
|
Kooistra RL, David R, Ruiz AC, Powers SW, Haselton KJ, Kiernan K, Blagborough AM, Solamen L, Olsen KW, Putonti C, Kanzok SM. Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity. PLoS One 2019; 13:e0209699. [PMID: 30596727 PMCID: PMC6312279 DOI: 10.1371/journal.pone.0209699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/09/2018] [Indexed: 11/18/2022] Open
Abstract
We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein of a protozoan organism, Plasmodium berghei. Initial transcription analysis revealed continuous low-level expression of pbphlp-3 throughout the complex Plasmodium life cycle. Attempts to knockout pbphlp-3 in P. berghei did not yield live parasites, suggesting an essential role for the gene in Plasmodium. We cloned, expressed and purified PbPhLP-3 and determined that the recombinant protein is redox active in vitro in a thioredoxin-coupled redox assay. It also has the capacity to reduce the organic compound tert-Butyl hydroperoxide (TBHP) in vitro, albeit at low efficiency. Sequence analysis, structural modeling, and site-directed mutagenesis revealed a conserved cysteine in the thioredoxin domain to be the redox active residue. Lastly, we provide evidence that recombinant human PhLP-3 exhibits redox activity similar to that of PbPhLP-3 and suggest that redox activity may be conserved in PhLP-3 homologs of other species. Our data provide new insight into the function of PhLP-3, which is hypothesized to act as co-chaperones in the folding and regulation of cytoskeletal proteins. We discuss the potential implications of PhLP-3 as a thioredoxin-target protein and possible links between the cellular redox network and the eukaryotic protein folding machinery.
Collapse
Affiliation(s)
- Rachel L. Kooistra
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Robin David
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ana C. Ruiz
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Sean W. Powers
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Kyle J. Haselton
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Kaitlyn Kiernan
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Andrew M. Blagborough
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ligin Solamen
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States of America
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
10
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
11
|
Bregier C, Krzemień-Ojak L, Włoga D, Jerka-Dziadosz M, Joachimiak E, Batko K, Filipiuk I, Smietanka U, Gaertig J, Fabczak S, Fabczak H. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila. J Cell Physiol 2013; 228:2175-89. [PMID: 23588994 DOI: 10.1002/jcp.24384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/04/2013] [Indexed: 01/23/2023]
Abstract
Recent studies have implicated the phosducin-like protein-2 (PHLP2) in regulation of CCT, a chaperonin whose activity is essential for folding of tubulin and actin. However, the exact molecular function of PHLP2 is unclear. Here we investigate the significance of PHLP2 in a ciliated unicellular model, Tetrahymena thermophila, by deleting its single homolog, Phlp2p. Cells lacking Phlp2p became larger and died within 96 h. Overexpressed Phlp2p-HA localized to cilia, basal bodies, and cytosol without an obvious change in the phenotype. Despite similar localization, overexpressed GFP-Phlp2p caused a dominant-negative effect. Cells overproducing GFP-Phlp2p had decreased rates of proliferation, motility and phagocytosis, as compared to wild type cells or cells overproducing a non-tagged Phlp2p. Growing GFP-Phlp2p-overexpressing cells had fewer cilia and, when deciliated, failed to regenerate cilia, indicating defects in cilia assembly. Paclitaxel-treated GFP-Phlp2p cells failed to elongate cilia, indicating a change in the microtubules dynamics. The pattern of ciliary and cytosolic tubulin isoforms on 2D gels differed between wild type and GFP-Phlp2p-overexpressing cells. Thus, in Tetrahymena, PhLP2 is essential and under specific experimental conditions its activity affects tubulin and microtubule-dependent functions including cilia assembly.
Collapse
Affiliation(s)
- Cezary Bregier
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Millán-Zambrano G, Rodríguez-Gil A, Peñate X, de Miguel-Jiménez L, Morillo-Huesca M, Krogan N, Chávez S. The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet 2013; 9:e1003776. [PMID: 24068951 PMCID: PMC3777993 DOI: 10.1371/journal.pgen.1003776] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction. Transcription is the biological process that allows genes to be copied into RNA; the molecule that can be read by the cell in order to fabricate its structural components, proteins. Transcription is carried out by RNA polymerases, but these molecular machines need auxiliary factors to guide them through the genome and to help them during the RNA synthesis process. We searched for novel auxiliary factors using a genetic procedure and found a set of potential novel transcriptional players. Among them, we encountered a highly unexpected result: a factor, called prefoldin, so far exclusively involved in the folding of proteins during their fabrication. We confirmed that prefoldin binds transcribed genes and plays an important role during gene transcription. We also further investigated this transcriptional role and found that prefoldin is important for unpacking genes, thus facilitating the advance of the RNA polymerases along them.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lola de Miguel-Jiménez
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Macarena Morillo-Huesca
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastián Chávez
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
13
|
Lu A, Wangpu X, Han D, Feng H, Zhao J, Ma J, Qu S, Chen X, Liu B, Zheng M. TXNDC9 expression in colorectal cancer cells and its influence on colorectal cancer prognosis. Cancer Invest 2013; 30:721-6. [PMID: 23210642 DOI: 10.3109/07357907.2012.732160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we analyzed the protein expression of thioredoxin domain containing 9 (TXNDC9) in 116 colorectal cancer (CRC) cases. Among them, 97 were positive in CRC tissues and 60 were positive in normal mucosa. TXNDC9 expression in CRC was correlated with the extent of tumor invasion and the tumor size. TXNDC9-negative patients had longer lifespans. In vitro assays showed the significant suppression of CRC cell proliferation (P < .01) compared with two control groups; the number of invaded cells also decreased (P < .01). These findings suggest that TXNDC9 gene may function in cancer development and may be an effective target for inhibiting the growth and metastasis of CRC cells.
Collapse
Affiliation(s)
- Aiguo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hayes NVL, Jossé L, Smales CM, Carden MJ. Modulation of phosducin-like protein 3 (PhLP3) levels promotes cytoskeletal remodelling in a MAPK and RhoA-dependent manner. PLoS One 2011; 6:e28271. [PMID: 22174782 PMCID: PMC3235111 DOI: 10.1371/journal.pone.0028271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background Phosducin-like protein 3 (PhLP3) forms a ternary complex with the ATP-dependent molecular chaperone CCT and its folding client tubulin. In vitro studies suggest PhLP3 plays an inhibitory role in β-tubulin folding while conversely in vivo genetic studies suggest PhLP3 is required for the correct folding of β-tubulin. We have a particular interest in the cytoskeleton, its chaperones and their role in determining cellular phenotypes associated with high level recombinant protein expression from mammalian cell expression systems. Methodology/Principal Findings As studies into PhLP3 function have been largely carried out in non mammalian systems, we examined the effect of human PhLP3 over-expression and siRNA silencing using a single murine siRNA on both tubulin and actin systems in mammalian Chinese hamster ovary (CHO) cell lines. We show that over-expression of PhLP3 promotes an imbalance of α and β tubulin subunits, microtubule disassembly and cell death. In contrast, β-actin levels are not obviously perturbed. On-the-other-hand, RNA silencing of PhLP3 increases RhoA-dependent actin filament formation and focal adhesion formation and promotes a dramatic elongated fibroblast-like change in morphology. This was accompanied by an increase in phosphorylated MAPK which has been associated with promoting focal adhesion assembly and maturation. Transient overexpression of PhLP3 in knockdown experiments rescues cells from the morphological change observed during PhLP3 silencing but mitosis is perturbed, probably reflecting a tipping back of the balance of PhLP3 levels towards the overexpression state. Conclusions Our results support the hypothesis that PhLP3 is important for the maintenance of β-tubulin levels in mammalian cells but also that its modulation can promote actin-based cytoskeletal remodelling by a mechanism linked with MAPK phosphorylation and RhoA-dependent changes. PhLP3 levels in mammalian cells are thus finely poised and represents a novel target for engineering industrially relevant cell lines to evolve lines more suited to suspension or adherent cell growth.
Collapse
Affiliation(s)
- Nandini V. L. Hayes
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Lyne Jossé
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - C. Mark Smales
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (CMS); (MJC)
| | - Martin J. Carden
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (CMS); (MJC)
| |
Collapse
|
15
|
Lee Y, Smith RS, Jordan W, King BL, Won J, Valpuesta JM, Naggert JK, Nishina PM. Prefoldin 5 is required for normal sensory and neuronal development in a murine model. J Biol Chem 2010; 286:726-36. [PMID: 20956523 DOI: 10.1074/jbc.m110.177352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones and co-chaperones are crucial for cellular development and maintenance as they assist in protein folding and stabilization of unfolded or misfolded proteins. Prefoldin (PFDN), a ubiquitously expressed heterohexameric co-chaperone, is necessary for proper folding of nascent proteins, in particular, tubulin and actin. Here we show that a genetic disruption in the murine Pfdn5 gene, a subunit of prefoldin, causes a syndrome characterized by photoreceptor degeneration, central nervous system abnormalities, and male infertility. Our data indicate that a missense mutation in Pfdn5, may cause these phenotypes through a reduction in formation of microtubules and microfilaments, which are necessary for the development of cilia and cytoskeletal structures, respectively. The diversity of phenotypes demonstrated by models carrying mutations in different PFDN subunits suggests that each PFDN subunit must confer a distinct substrate specificity to the prefoldin holocomplex.
Collapse
Affiliation(s)
- YongSuk Lee
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sarkar S, Haldar S, Hajra S, Sinha P. The budding yeast protein Sum1 functions independently of its binding partners Hst1 and Sir2 histone deacetylases to regulate microtubule assembly. FEMS Yeast Res 2010; 10:660-73. [PMID: 20608984 DOI: 10.1111/j.1567-1364.2010.00655.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The budding yeast protein Sum1 is a transcription factor that associates with the histone deacetylase Hst1p or, in its absence, with Sir2p to form repressed chromatin. In this study, SUM1 has been identified as an allele-specific dosage suppressor of mutations in the major alpha-tubulin-coding gene TUB1. When cloned in a 2mu vector, SUM1 suppressed the cold-sensitive and benomyl-hypersensitive phenotypes associated with the tub1-1 mutation. The suppression was Hst1p- and Sir2p-independent, suggesting that it was not mediated by deacetylation events associated with Sum1p when it functions along with its known partner histone deacetylases. This protein was confined to the nucleus, but did not colocalize with the microtubules nor did it bind to alpha- or beta-tubulin. Cells deleted of SUM1 showed hypersensitivity to benomyl and cold-sensitive growth, phenotypes exhibited by mutants defective in microtubule function and cytoskeletal defects. These observations suggest that Sum1p is a novel regulator of microtubule function. We propose that as a dosage suppressor, Sum1p promotes the formation of microtubules by increasing the availability of the alphabeta-heterodimer containing the mutant alpha-tubulin subunit.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
17
|
Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions. Genetics 2010; 185:1111-28. [PMID: 20439772 DOI: 10.1534/genetics.110.117531] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Aft1 is activated in iron-deficient cells to induce the expression of iron regulon genes, which coordinate the increase of iron uptake and remodel cellular metabolism to survive low-iron conditions. In addition, Aft1 has been implicated in numerous cellular processes including cell-cycle progression and chromosome stability; however, it is unclear if all cellular effects of Aft1 are mediated through iron homeostasis. To further investigate the cellular processes affected by Aft1, we identified >70 deletion mutants that are sensitive to perturbations in AFT1 levels using genome-wide synthetic lethal and synthetic dosage lethal screens. Our genetic network reveals that Aft1 affects a diverse range of cellular processes, including the RIM101 pH pathway, cell-wall stability, DNA damage, protein transport, chromosome stability, and mitochondrial function. Surprisingly, only a subset of mutants identified are sensitive to extracellular iron fluctuations or display genetic interactions with mutants of iron regulon genes AFT2 or FET3. We demonstrate that Aft1 works in parallel with the RIM101 pH pathway and the role of Aft1 in DNA damage repair is mediated by iron. In contrast, through both directed studies and microarray transcriptional profiling, we show that the role of Aft1 in chromosome maintenance and benomyl resistance is independent of its iron regulatory role, potentially through a nontranscriptional mechanism.
Collapse
|
18
|
Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 2010; 35:288-97. [PMID: 20116259 DOI: 10.1016/j.tibs.2009.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/25/2022]
Abstract
Actins and tubulins are abundant cytoskeletal proteins that support diverse cellular processes. Owing to the unique properties of these filament-forming proteins, an intricate cellular machinery consisting minimally of the chaperonin CCT, prefoldin, phosducin-like proteins, and tubulin cofactors has evolved to facilitate their biogenesis. More recent evidence also suggests that regulated degradation pathways exist for actin (via TRIM32) and tubulin (via parkin or cofactor E-like). Collectively, these pathways maintain the quality control of cytoskeletal proteins ('proteostasis'), ensuring the appropriate function of microfilaments and microtubules. Here, we focus on the molecular mechanisms of the quality control of actin and tubulin, and discuss emerging links between cytoskeletal proteostasis and human diseases.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
19
|
McCormack EA, Altschuler GM, Dekker C, Filmore H, Willison KR. Yeast phosducin-like protein 2 acts as a stimulatory co-factor for the folding of actin by the chaperonin CCT via a ternary complex. J Mol Biol 2009; 391:192-206. [PMID: 19501098 DOI: 10.1016/j.jmb.2009.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/18/2022]
Abstract
The eukaryotic chaperonin-containing TCP-1 (CCT) folds the cytoskeletal protein actin. The folding mechanism of this 16-subunit, 1-MDa machine is poorly characterised due to the absence of quantitative in vitro assays. We identified phosducin-like protein 2, Plp2p (=PLP2), as an ATP-elutable binding partner of yeast CCT while establishing the CCT interactome. In a novel in vitro CCT-ACT1 folding assay that is functional under physiological conditions, PLP2 is a stimulatory co-factor. In a single ATP-driven cycle, PLP2-CCT-ACT1 complexes yield 30-fold more native actin than CCT-ACT1 complexes. PLP2 interacts directly with ACT1 through the C-terminus of its thioredoxin fold and the CCT-binding subdomain 4 of actin. The in vitro CCT-ACT1-PLP2 folding cycle of the preassembled complex takes 90 s at 30 degrees C, several times slower than the canonical chaperonin GroEL. The specific interactions between PLP2, CCT and ACT1 in the yeast-component in vitro system and the pronounced stimulatory effect of PLP2 on actin folding are consistent with in vivo genetic approaches demonstrating an essential and positive role for PLP2 in cellular processes involving actin in Saccharomyces cerevisiae. In mammalian systems, however, several members of the PLP family, including human PDCL3, the orthologue of PLP2, have been shown to be inhibitory toward CCT-mediated folding of actin in vivo and in vitro. Here, using a rabbit-reticulocyte-derived in vitro translation system, we found that inhibition of beta-actin folding by PDCL3 can be relieved by exchanging its acidic C-terminal extension for that of PLP2. It seems that additional levels of regulatory control of CCT activity by this PLP have emerged in higher eukaryotes.
Collapse
Affiliation(s)
- Elizabeth A McCormack
- Protein Folding and Assembly Team, Section of Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, UK
| | | | | | | | | |
Collapse
|
20
|
Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 2009; 236:231-8. [PMID: 19371599 DOI: 10.1016/j.taap.2009.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/23/2009] [Accepted: 02/04/2009] [Indexed: 11/21/2022]
Abstract
Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90alpha/beta also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.
Collapse
|
21
|
Brackley KI, Grantham J. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones 2009; 14:23-31. [PMID: 18595008 PMCID: PMC2673901 DOI: 10.1007/s12192-008-0057-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 05/29/2008] [Indexed: 11/30/2022] Open
Abstract
The chaperonin containing TCP-1 (CCT) is required for the production of native actin and tubulin and numerous other proteins, several of which are involved in cell cycle progression. The mechanistic details of how CCT acts upon its folding substrates are intriguing: whilst actin and tubulin bind in a sequence-specific manner, it is possible that some proteins could use CCT as a more general binding interface. Therefore, how CCT accommodates the folding requirements of its substrates, some of which are produced in a cell cycle-specific manner, is of great interest. The reliance of folding substrates upon CCT for the adoption of their native structures results in CCT activity having far-reaching implications for a vast array of cellular processes. For example, the dependency of the major cytoskeletal proteins actin and tubulin upon CCT results in CCT activity being linked to any cellular process that depends on the integrity of the microfilament and microtubule-based cytoskeletal systems.
Collapse
Affiliation(s)
- Karen I. Brackley
- Department of Cell and Molecular Biology, Göteborgs Universitet, Medicinaregatan 9C, 40530 Göteborg, Sweden
| | - Julie Grantham
- Department of Cell and Molecular Biology, Göteborgs Universitet, Medicinaregatan 9C, 40530 Göteborg, Sweden
| |
Collapse
|
22
|
Castellano MM, Sablowski R. Phosducin-Like Protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. THE PLANT CELL 2008; 20:969-81. [PMID: 18390592 PMCID: PMC2390725 DOI: 10.1105/tpc.107.057737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Given the central role of cell division in meristems, one might expect meristem growth to be regulated by mitotic checkpoints, including checkpoints for correct microtubule function. Here, we studied the role of two close Phosducin-Like Protein 3 homologs from Arabidopsis thaliana (PLP3a and PLP3b) in the microtubule assembly pathway and determined the consequences of inhibiting PLP3a and PLP3b expression in the meristem. PLP3 function is essential in Arabidopsis: impairing PLP3a and PLP3b expression disrupted microtubule arrays and caused polyploidy, aneuploidy, defective cytokinesis, and disoriented cell growth. Consistent with a role in microtubule formation, PLP3a interacted with beta-tubulin in the yeast two-hybrid assay and, when overexpressed, increased resistance to drugs that inhibit tubulin polymerization. Inhibition of PLP3 function targeted to the meristem caused severe mitotic defects, but the cells carried on cycling through DNA replication and abortive cytokinesis. Thus, we showed that PLP3 is involved in microtubule formation in Arabidopsis and provided genetic evidence that cell viability and growth in the meristem are not subordinate to successful completion of microtubule-dependent steps of cell division.
Collapse
Affiliation(s)
- M Mar Castellano
- Department of Cell and Developmental Biology, John Ines Centre, Norwich, NR4 7UH, United Kingdom
| | | |
Collapse
|
23
|
Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal 2007; 19:2417-27. [PMID: 17658730 PMCID: PMC2095786 DOI: 10.1016/j.cellsig.2007.06.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 01/08/2023]
Abstract
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein betagamma dimers (Gbetagamma) and inhibiting their ability to interact with G protein alpha subunits (Galpha) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gbetagamma dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gbetagamma subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University Provo, Utah 84602, USA.
| | | |
Collapse
|
24
|
Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 2007; 313:320-34. [PMID: 18062952 DOI: 10.1016/j.ydbio.2007.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/29/2022]
Abstract
The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in alpha-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | | | | | |
Collapse
|
25
|
Stirling PC, Srayko M, Takhar KS, Pozniakovsky A, Hyman AA, Leroux MR. Functional interaction between phosducin-like protein 2 and cytosolic chaperonin is essential for cytoskeletal protein function and cell cycle progression. Mol Biol Cell 2007; 18:2336-45. [PMID: 17429077 PMCID: PMC1877119 DOI: 10.1091/mbc.e07-01-0069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Chaperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2.
Collapse
Affiliation(s)
- Peter C. Stirling
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| | - Martin Srayko
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Karam S. Takhar
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| | - Andrei Pozniakovsky
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Anthony A. Hyman
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Michel R. Leroux
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| |
Collapse
|
26
|
Grantham J, Brackley KI, Willison KR. Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Exp Cell Res 2006; 312:2309-24. [PMID: 16765944 DOI: 10.1016/j.yexcr.2006.03.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
The chaperonin CCT hexadecamer is required for the folding of non-native actins and tubulins in eukaryotic cells. Among the consequences of greatly reducing CCT holocomplex levels in human cell lines by siRNA targeting are growth arrest and changes in cell morphology and motility. Less extensive reduction of CCT activity via microinjection of an inhibitory anti-CCT epsilon subunit monoclonal antibody, which alters the rates of substrate processing by CCT in vitro, causes a delay in cell cycle progression through G1/S phase in synchronized Swiss 3T3 cells. The degree of growth arrest strongly correlates with the extent of CCT depletion, indicating that full CCT activity is required for normal cell growth and division. Depletion of CCT does not affect actin polypeptide synthesis but causes a reduction in levels of native actin and perturbation of actin-based cell motility in BE cells. There are no large-scale effects on cytoplasmic protein synthesis or a general heat shock response during periods of low CCT activity.
Collapse
Affiliation(s)
- Julie Grantham
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | | | | |
Collapse
|
27
|
Lacefield S, Magendantz M, Solomon F. Consequences of defective tubulin folding on heterodimer levels, mitosis and spindle morphology in Saccharomyces cerevisiae. Genetics 2006; 173:635-46. [PMID: 16582437 PMCID: PMC1526528 DOI: 10.1534/genetics.105.055160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In budding yeast, the essential roles of microtubules include segregating chromosomes and positioning the nucleus during mitosis. Defects in these functions can lead to aneuploidy and cell death. To ensure proper mitotic spindle and cytoplasmic microtubule formation, the cell must maintain appropriate stoichiometries of alpha- and beta-tubulin, the basic subunits of microtubules. The experiments described here investigate the minimal levels of tubulin heterodimers needed for mitotic function. We have found a triple-mutant strain, pac10Delta plp1Delta yap4Delta, which has only 20% of wild-type tubulin heterodimer levels due to synthesis and folding defects. The anaphase spindles in these cells are approximately 64% the length of wild-type spindles. The mutant cells are viable and accurately segregate chromosomes in mitosis, but they do have specific defects in mitosis such as abnormal nuclear positioning. The results establish that cells with 20% of wild-type levels of tubulin heterodimers can perform essential cellular functions with a short spindle, but require higher tubulin heterodimer concentrations to attain normal spindle length and prevent mitotic defects.
Collapse
Affiliation(s)
- Soni Lacefield
- Department of Biology and Center for Cancer Research, M.I.T., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
28
|
Stirling PC, Cuéllar J, Alfaro GA, El Khadali F, Beh CT, Valpuesta JM, Melki R, Leroux MR. PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates. J Biol Chem 2006; 281:7012-21. [PMID: 16415341 DOI: 10.1074/jbc.m513235200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many ATP-dependent molecular chaperones, including Hsp70, Hsp90, and the chaperonins GroEL/Hsp60, require cofactor proteins to regulate their ATPase activities and thus folding functions in vivo. One conspicuous exception has been the eukaryotic chaperonin CCT, for which no regulator of its ATPase activity, other than non-native substrate proteins, is known. We identify the evolutionarily conserved PhLP3 (phosducin-like protein 3) as a modulator of CCT function in vitro and in vivo. PhLP3 binds CCT, spanning the cylindrical chaperonin cavity and contacting at least two subunits. When present in a ternary complex with CCT and an actin or tubulin substrate, PhLP3 significantly diminishes the chaperonin ATPase activity, and accordingly, excess PhLP3 perturbs actin or tubulin folding in vitro. Most interestingly, however, the Saccharomyces cerevisiae PhLP3 homologue is required for proper actin and tubulin function. This cellular role of PhLP3 is most apparent in a strain that also lacks prefoldin, a chaperone that facilitates CCT-mediated actin and tubulin folding. We propose that the antagonistic actions of PhLP3 and prefoldin serve to modulate CCT activity and play a key role in establishing a functional cytoskeleton in vivo.
Collapse
Affiliation(s)
- Peter C Stirling
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Knol JC, Engel R, Blaauw M, Visser AJWG, van Haastert PJM. The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum. Mol Cell Biol 2005; 25:8393-400. [PMID: 16135826 PMCID: PMC1234308 DOI: 10.1128/mcb.25.18.8393-8400.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosducin proteins are known to inhibit G protein-mediated signaling by sequestering Gbetagamma subunits. However, Dictyostelium discoideum cells lacking the phosducin-like protein PhLP1 display defective rather than enhanced G protein signaling. Here we show that green fluorescent protein (GFP)-tagged Gbeta (GFP-Gbeta) and GFP-Ggamma subunits exhibit drastically reduced steady-state levels and are absent from the plasma membrane in phlp1(-) cells. Triton X-114 partitioning suggests that lipid attachment to GFP-Ggamma occurs in wild-type cells but not in phlp1(-) and gbeta(-) cells. Moreover, Gbetagamma dimers could not be detected in vitro in coimmunoprecipitation assays with phlp1(-) cell lysates. Accordingly, in vivo diffusion measurements using fluorescence correlation spectroscopy showed that while GFP-Ggamma proteins are present in a complex in wild-type cells, they are free in phlp1(-) and gbeta(-) cells. Collectively, our data strongly suggest the absence of Gbetagamma dimer formation in Dictyostelium cells lacking PhLP1. We propose that PhLP1 serves as a cochaperone assisting the assembly of Gbeta and Ggamma into a functional Gbetagamma complex. Thus, phosducin family proteins may fulfill hitherto unsuspected biosynthetic functions.
Collapse
Affiliation(s)
- Jaco C Knol
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Srayko M, Kaya A, Stamford J, Hyman AA. Identification and Characterization of Factors Required for Microtubule Growth and Nucleation in the Early C. elegans Embryo. Dev Cell 2005; 9:223-36. [PMID: 16054029 DOI: 10.1016/j.devcel.2005.07.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/10/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) are dynamic polymers that undergo cell cycle and position-sensitive regulation of polymerization and depolymerization. Although many different factors that regulate MT dynamics have been described, to date there has been no systematic analysis of genes required for MT dynamics in a single system. Here, we use a transgenic EB1::GFP strain, which labels the growing plus ends of MTs, to analyze the growth rate, nucleation rate, and distribution of growing MTs in the Caenorhabditis elegans embryo. We also present the results from an RNAi screen of 40 genes previously implicated in MT-based processes. Our findings suggest that fast microtubule growth is dependent on the amount of free tubulin and the ZYG-9-TAC-1 complex. Robust MT nucleation by centrosomes requires AIR-1, SPD-2, SPD-5, and gamma-tubulin. However, we found that centrosomes do not nucleate MTs to saturation; rather, the depolymerizing kinesin-13 subfamily member KLP-7 is required to limit microtubule outgrowth from centrosomes.
Collapse
Affiliation(s)
- Martin Srayko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
31
|
Lukov GL, Hu T, McLaughlin JN, Hamm HE, Willardson BM. Phosducin-like protein acts as a molecular chaperone for G protein betagamma dimer assembly. EMBO J 2005; 24:1965-75. [PMID: 15889144 PMCID: PMC1142607 DOI: 10.1038/sj.emboj.7600673] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/11/2005] [Indexed: 12/13/2022] Open
Abstract
Phosducin-like protein (PhLP) is a widely expressed binding partner of the G protein betagamma subunit dimer (Gbetagamma). However, its physiological role is poorly understood. To investigate PhLP function, its cellular expression was blocked using RNA interference, resulting in inhibition of Gbetagamma expression and G protein signaling. This inhibition was caused by an inability of nascent Gbetagamma to form dimers. Phosphorylation of PhLP at serines 18-20 by protein kinase CK2 was required for Gbetagamma formation, while a high-affinity interaction of PhLP with the cytosolic chaperonin complex appeared unnecessary. PhLP bound nascent Gbeta in the absence of Ggamma, and S18-20 phosphorylation was required for Ggamma to associate with the PhLP-Gbeta complex. Once Ggamma bound, PhLP was released. These results suggest a mechanism for Gbetagamma assembly in which PhLP stabilizes the nascent Gbeta polypeptide until Ggamma can associate, resulting in membrane binding of Gbetagamma and release of PhLP to catalyze another round of assembly.
Collapse
Affiliation(s)
- Georgi L Lukov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ting Hu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joseph N McLaughlin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- Department of Chemistry and Biochemistry, Brigham Young University, C210 BNSN, Provo, UT 84602, USA. Tel.: +1 801 422 2785; Fax: +1 801 422 0153; E-mail:
| |
Collapse
|
32
|
Martín-Benito J, Bertrand S, Hu T, Ludtke PJ, McLaughlin JN, Willardson BM, Carrascosa JL, Valpuesta JM. Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. Proc Natl Acad Sci U S A 2004; 101:17410-5. [PMID: 15583139 PMCID: PMC536017 DOI: 10.1073/pnas.0405070101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional structure of the complex formed between the cytosolic chaperonin CCT (chaperonin containing TCP-1) and phosducin (Pdc)-like protein (PhLP), a regulator of CCT activity, has been solved by cryoelectron microscopy. Binding of PhLP to CCT occurs through only one of the chaperonin rings, and the protein does not occupy the central folding cavity but rather sits above it through interactions with two regions on opposite sides of the ring. This causes the apical domains of the CCT subunits to close in, thus excluding access to the folding cavity. The atomic model of PhLP generated from several atomic structures of the homologous Pdc fits very well with the mass of the complex attributable to PhLP and predicts the involvement of several sequences of PhLP in CCT binding. Binding experiments performed with PhLP/Pdc chimeric proteins, taking advantage of the fact that Pdc does not interact with CCT, confirm that both the N- and C-terminal domains of PhLP are involved in CCT binding and that several regions suggested by the docking experiment are indeed critical in the interaction with the cytosolic chaperonin.
Collapse
Affiliation(s)
- Jaime Martín-Benito
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|