1
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
2
|
Goldbeter A. Dissipative structures in biological systems: bistability, oscillations, spatial patterns and waves. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0376. [PMID: 29891498 PMCID: PMC6000149 DOI: 10.1098/rsta.2017.0376] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 05/05/2023]
Abstract
The goal of this review article is to assess how relevant is the concept of dissipative structure for understanding the dynamical bases of non-equilibrium self-organization in biological systems, and to see where it has been applied in the five decades since it was initially proposed by Ilya Prigogine. Dissipative structures can be classified into four types, which will be considered, in turn, and illustrated by biological examples: (i) multistability, in the form of bistability and tristability, which involve the coexistence of two or three stable steady states, or in the form of birhythmicity, which involves the coexistence between two stable rhythms; (ii) temporal dissipative structures in the form of sustained oscillations, illustrated by biological rhythms; (iii) spatial dissipative structures, known as Turing patterns; and (iv) spatio-temporal structures in the form of propagating waves. Rhythms occur with widely different periods at all levels of biological organization, from neural, cardiac and metabolic oscillations to circadian clocks and the cell cycle; they play key roles in physiology and in many disorders. New rhythms are being uncovered while artificial ones are produced by synthetic biology. Rhythms provide the richest source of examples of dissipative structures in biological systems. Bistability has been observed experimentally, but has primarily been investigated in theoretical models in an increasingly wide range of biological contexts, from the genetic to the cell and animal population levels, both in physiological conditions and in disease. Bistable transitions have been implicated in the progression between the different phases of the cell cycle and, more generally, in the process of cell fate specification in the developing embryo. Turing patterns are exemplified by the formation of some periodic structures in the course of development and by skin stripe patterns in animals. Spatio-temporal patterns in the form of propagating waves are observed within cells as well as in intercellular communication. This review illustrates how dissipative structures of all sorts abound in biological systems.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 1)'.
Collapse
Affiliation(s)
- Albert Goldbeter
- Unité de Chronobiologie théorique, Service de Chimie physique et Biologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Holst-Hansen T, Abad E, Muntasell A, López-Botet M, Jensen MH, Trusina A, Garcia-Ojalvo J. Impact of Zygosity on Bimodal Phenotype Distributions. Biophys J 2017; 113:148-156. [PMID: 28700913 DOI: 10.1016/j.bpj.2017.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
Allele number, or zygosity, is a clear determinant of gene expression in diploid cells. However, the relationship between the number of copies of a gene and its expression can be hard to anticipate, especially when the gene in question is embedded in a regulatory circuit that contains feedback. Here, we study this question making use of the natural genetic variability of human populations, which allows us to compare the expression profiles of a receptor protein in natural killer cells among donors infected with human cytomegalovirus with one or two copies of the allele. Crucially, the distribution of gene expression in many of the donors is bimodal, which indicates the presence of a positive feedback loop somewhere in the regulatory environment of the gene. Three separate gene-circuit models differing in the location of the positive feedback loop with respect to the gene can all reproduce the homozygous data. However, when the resulting fitted models are applied to the hemizygous donors, one model (the one with the positive feedback located at the level of gene transcription) is superior in describing the experimentally observed gene-expression profile. In that way, our work shows that zygosity can help us relate the structure and function of gene regulatory networks.
Collapse
Affiliation(s)
| | - Elena Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Miguel López-Botet
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Simon CR, Siviero F, Monesi N. Beyond DNA puffs: What can we learn from studying sciarids? Genesis 2016; 54:361-78. [PMID: 27178805 DOI: 10.1002/dvg.22946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Roberto Simon
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro-UFTM, Instituto de Ciências Biológicas e Naturais, Uberaba, MG, Brazil, CEP 38025-015
| | - Fábio Siviero
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP, Brazil, CEP 05508-900
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Sen S. Characterization of tradeoffs in biomolecular signaling. Biosystems 2013; 114:261-8. [PMID: 24145070 DOI: 10.1016/j.biosystems.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 08/14/2013] [Accepted: 09/26/2013] [Indexed: 11/28/2022]
Abstract
Systems-level tradeoffs are fundamental in engineering, and recent work has highlighted an analogous role for them in biology. However, the extent of validity of these tradeoffs, especially for biomolecular systems, is generally unclear. Here, we address this issue for signaling tradeoffs that can constrain, for a fixed concentration of the signaling protein, a simultaneous enhancement of the gain and range of an amplifier or of the gain and threshold of a switch. We find that these gain-related tradeoffs persist in mathematical models of biomolecular reaction mechanisms that are at the core of large classes of signaling systems. Further, we find that these tradeoffs are also prevalent in the parametric functional forms commonly used to describe input-output curves in experimental analyses. Finally, we find that these tradeoffs can persist even in the presence of transcriptional feedback mechanisms that can change the concentration of the signaling protein. These results present a systematic characterization of these tradeoffs in biomolecular signaling systems.
Collapse
Affiliation(s)
- Shaunak Sen
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Kim AR, Martinez C, Ionides J, Ramos AF, Ludwig MZ, Ogawa N, Sharp DH, Reinitz J. Rearrangements of 2.5 kilobases of noncoding DNA from the Drosophila even-skipped locus define predictive rules of genomic cis-regulatory logic. PLoS Genet 2013; 9:e1003243. [PMID: 23468638 PMCID: PMC3585115 DOI: 10.1371/journal.pgen.1003243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
Rearrangements of about 2.5 kilobases of regulatory DNA located 5' of the transcription start site of the Drosophila even-skipped locus generate large-scale changes in the expression of even-skipped stripes 2, 3, and 7. The most radical effects are generated by juxtaposing the minimal stripe enhancers MSE2 and MSE3 for stripes 2 and 3 with and without small "spacer" segments less than 360 bp in length. We placed these fusion constructs in a targeted transformation site and obtained quantitative expression data for these transformants together with their controlling transcription factors at cellular resolution. These data demonstrated that the rearrangements can alter expression levels in stripe 2 and the 2-3 interstripe by a factor of more than 10. We reasoned that this behavior would place tight constraints on possible rules of genomic cis-regulatory logic. To find these constraints, we confronted our new expression data together with previously obtained data on other constructs with a computational model. The model contained representations of thermodynamic protein-DNA interactions including steric interference and cooperative binding, short-range repression, direct repression, activation, and coactivation. The model was highly constrained by the training data, which it described within the limits of experimental error. The model, so constrained, was able to correctly predict expression patterns driven by enhancers for other Drosophila genes; even-skipped enhancers not included in the training set; stripe 2, 3, and 7 enhancers from various Drosophilid and Sepsid species; and long segments of even-skipped regulatory DNA that contain multiple enhancers. The model further demonstrated that elevated expression driven by a fusion of MSE2 and MSE3 was a consequence of the recruitment of a portion of MSE3 to become a functional component of MSE2, demonstrating that cis-regulatory "elements" are not elementary objects.
Collapse
Affiliation(s)
- Ah-Ram Kim
- Department of Ecology and Evolution, Chicago Center for Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Carlos Martinez
- Department of Ecology and Evolution, Chicago Center for Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - John Ionides
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Michael Z. Ludwig
- Department of Ecology and Evolution, Chicago Center for Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Nobuo Ogawa
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - David H. Sharp
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John Reinitz
- Department of Ecology and Evolution, Chicago Center for Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, Department of Molecular Genetics and Cell Biology, and Institute of Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Hartmann B, Castelo R, Miñana B, Peden E, Blanchette M, Rio DC, Singh R, Valcárcel J. Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2011; 17:453-468. [PMID: 21233220 PMCID: PMC3039145 DOI: 10.1261/rna.2460411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
In Drosophila melanogaster, female-specific expression of Sex-lethal (SXL) and Transformer (TRA) proteins controls sex-specific alternative splicing and/or translation of a handful of regulatory genes responsible for sexual differentiation and behavior. Recent findings in 2009 by Telonis-Scott et al. document widespread sex-biased alternative splicing in fruitflies, including instances of tissue-restricted sex-specific splicing. Here we report results arguing that some of these novel sex-specific splicing events are regulated by mechanisms distinct from those established by female-specific expression of SXL and TRA. Bioinformatic analysis of SXL/TRA binding sites, experimental analysis of sex-specific splicing in S2 and Kc cells lines and of the effects of SXL knockdown in Kc cells indicate that SXL-dependent and SXL-independent regulatory mechanisms coexist within the same cell. Additional determinants of sex-specific splicing can be provided by sex-specific differences in the expression of RNA binding proteins, including Hrp40/Squid. We report that sex-specific alternative splicing of the gene hrp40/squid leads to sex-specific differences in the levels of this hnRNP protein. The significant overlap between sex-regulated alternative splicing changes and those induced by knockdown of hrp40/squid and the presence of related sequence motifs enriched near subsets of Hrp40/Squid-regulated and sex-regulated splice sites indicate that this protein contributes to sex-specific splicing regulation. A significant fraction of sex-specific splicing differences are absent in germline-less tudor mutant flies. Intriguingly, these include alternative splicing events that are differentially spliced in tissues distant from the germline. Collectively, our results reveal that distinct genetic programs control widespread sex-specific splicing in Drosophila melanogaster.
Collapse
|
8
|
Lu H, Kozhina E, Mahadevaraju S, Yang D, Avila FW, Erickson JW. Maternal Groucho and bHLH repressors amplify the dose-sensitive X chromosome signal in Drosophila sex determination. Dev Biol 2008; 323:248-60. [PMID: 18773886 PMCID: PMC2653429 DOI: 10.1016/j.ydbio.2008.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/07/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
In Drosophila, XX embryos are fated to develop as females, and XY embryos as males, because the diplo-X dose of four X-linked signal element genes, XSEs, activates the Sex-lethal establishment promoter, SxlPe, whereas the haplo-X XSE dose leaves SxlPe off. The threshold response of SxlPe to XSE concentrations depends in part on the bHLH repressor, Deadpan, present in equal amounts in XX and XY embryos. We identified canonical and non-canonical DNA-binding sites for Dpn at SxlPe and found that cis-acting mutations in the Dpn-binding sites caused stronger and earlier Sxl expression than did deletion of dpn implicating other bHLH repressors in Sxl regulation. Maternal Hey encodes one such bHLH regulator but the E(spl) locus does not. Elimination of the maternal corepressor Groucho also caused strong ectopic Sxl expression in XY, and premature Sxl activation in XX embryos, but Sxl was still expressed differently in the sexes. Our findings suggest that Groucho and associated maternal and zygotic bHLH repressors define the threshold XSE concentrations needed to activate SxlPe and that they participate directly in sex signal amplification. We present a model in which the XSE signal is amplified by a feedback mechanism that interferes with Gro-mediated repression in XX, but not XY embryos.
Collapse
Affiliation(s)
- Hong Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Elena Kozhina
- Department of Biology, Texas A&M University, College Station, TX 77843
| | | | - Dun Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Frank W. Avila
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - James W. Erickson
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
9
|
A shared enhancer controls a temporal switch between promoters during Drosophila primary sex determination. Proc Natl Acad Sci U S A 2008; 105:18436-41. [PMID: 19011108 DOI: 10.1073/pnas.0805993105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex-lethal (Sxl), the master regulatory gene of Drosophila somatic sex determination, is stably maintained in an on or an off state by autoregulatory control of Sxl premRNA processing. Establishment of the correct Sxl splicing pattern requires the coordinate regulation of two Sxl promoters. The first of these promoters, SxlPe, responds to the female dose of two X chromosomes to produce a pulse of Sxl protein that acts on the premRNA products from the second promoter, SxlPm, to establish the splicing loop. SxlPm is active in both sexes throughout most of development, but nothing is known about how SxlPm is expressed during the transition from X signal assessment to maintenance splicing. We found that SxlPm is activated earlier in females than in males in a range of Drosophila species, and that its expression overlaps briefly with that of SxlPe during the syncytial blastoderm stage. Activation of SxlPm depends on the scute, daughterless, and runt transcription factors, which communicate X chromosome dose to SxlPe, but is independent of the X signal element sisA and the maternal co-repressor groucho. We show that DNA sequences regulating the response of SxlPe to the X chromosome dose also control the sex-differential response of SxlPm. We propose that co-expression of Sxl protein and its premRNA substrate facilitates the transition from transcriptional to splicing control, and that delayed activation of SxlPm in males buffers against the inappropriate activation of Sxl by fluctuations in the strength of the X chromosome signal.
Collapse
|
10
|
Buchler NE, Louis M. Molecular titration and ultrasensitivity in regulatory networks. J Mol Biol 2008; 384:1106-19. [PMID: 18938177 DOI: 10.1016/j.jmb.2008.09.079] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/21/2008] [Accepted: 09/26/2008] [Indexed: 11/24/2022]
Abstract
Protein sequestration occurs when an active protein is sequestered by a repressor into an inactive complex. Using mathematical and computational modeling, we show how this regulatory mechanism (called "molecular titration") can generate ultrasensitive or "all-or-none" responses that are equivalent to highly cooperative processes. The ultrasensitive nature of the input-output response is mainly determined by two parameters: the dimer dissociation constant and the repressor concentration. Because in vivo concentrations are tunable through a variety of mechanisms, molecular titration represents a flexible mechanism for generating ultrasensitivity. Using physiological parameters, we report how details of in vivo protein degradation affect the strength of the ultrasensitivity at steady state. Given that developmental systems often transduce signals into cell-fate decisions on timescales incompatible with steady state, we further examine whether molecular titration can produce ultrasensitive responses within physiologically relevant time intervals. Using Drosophila somatic sex determination as a developmental paradigm, we demonstrate that molecular titration can generate ultrasensitivity on timescales compatible with most cell-fate decisions. Gene duplication followed by loss-of-function mutations can create dominant negatives that titrate and compete with the original protein. Dominant negatives are abundant in gene regulatory circuits, and our results suggest that molecular titration might be generating an ultrasensitive response in these networks.
Collapse
Affiliation(s)
- Nicolas E Buchler
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
11
|
Erickson JW, Quintero JJ. Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLoS Biol 2008; 5:e332. [PMID: 18162044 PMCID: PMC2222971 DOI: 10.1371/journal.pbio.0050332] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/09/2007] [Indexed: 11/18/2022] Open
Abstract
In the textbook view, the ratio of X chromosomes to autosome sets, X:A, is the primary signal specifying sexual fate in Drosophila. An alternative idea is that X chromosome number signals sex through the direct actions of several X-encoded signal element (XSE) proteins. In this alternative, the influence of autosome dose on X chromosome counting is largely indirect. Haploids (1X;1A), which possess the male number of X chromosomes but the female X:A of 1.0, and triploid intersexes (XX;AAA), which possess a female dose of two X chromosomes and the ambiguous X:A ratio of 0.67, represent critical tests of these hypotheses. To directly address the effects of ploidy in primary sex determination, we compared the responses of the signal target, the female-specific SxlPe promoter of the switch gene Sex-lethal, in haploid, diploid, and triploid embryos. We found that haploids activate SxlPe because an extra precellular nuclear division elevates total X chromosome numbers and XSE levels beyond those in diploid males. Conversely, triploid embryos cellularize one cycle earlier than diploids, causing premature cessation of SxlPe expression. This prevents XX;AAA embryos from fully engaging the autoregulatory mechanism that maintains subsequent Sxl expression, causing them to develop as sexual mosaics. We conclude that the X:A ratio predicts sexual fate, but does not actively specify it. Instead, the instructive X chromosome signal is more appropriately seen as collective XSE dose in the early embryo. Our findings reiterate that correlations between X:A ratios and cell fates in other organisms need not implicate the value of the ratio as an active signal.
Collapse
Affiliation(s)
- James W Erickson
- Department of Biology, Texas A&M University, College Station, Texas, United States of America.
| | | |
Collapse
|
12
|
Paszek P. Modeling stochasticity in gene regulation: characterization in the terms of the underlying distribution function. Bull Math Biol 2007; 69:1567-601. [PMID: 17361363 DOI: 10.1007/s11538-006-9176-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
Intrinsic stochasticity plays an essential role in gene regulation because of a small number of involved molecules of DNA, mRNA and protein of a given species. To better understand this phenomenon, small gene regulatory systems are mathematically modeled as systems of coupled chemical reactions, but the existing exact description utilizing a Chapman-Kolmogorov equation or simulation algorithms is limited and inefficient. The present work considers a much more efficient yet accurate modeling approach, which allows analyzing stochasticity in the system in the terms of the underlying distribution function. We depart from the analysis of a single gene regulatory module to find that the mRNA and protein variance is decomposable into additive terms resulting from respective sources of stochasticity. This variance decomposition is asserted by constructing two approximations to the exact stochastic description: First, the continuous approximation, which considers only the stochasticity due to the intermittent gene activity. Second, the mixed approximation, which in addition attributes stochasticity to the mRNA transcription/decay process. Considered approximations yield systems of first order partial differential equations for the underlying distribution function, which can be efficiently solved using developed numerical methods. Single cell simulations and numerical two-dimensional mRNA-protein stationary distribution functions are presented to confirm accuracy of approximating models.
Collapse
Affiliation(s)
- Pawel Paszek
- Department of Statistics, Rice University, 6100 Main St. MS-138, Houston, TX 77005, USA.
| |
Collapse
|
13
|
Avila FW, Erickson JW. Drosophila JAK/STAT pathway reveals distinct initiation and reinforcement steps in early transcription of Sxl. Curr Biol 2007; 17:643-8. [PMID: 17363251 DOI: 10.1016/j.cub.2007.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 01/05/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
X-linked signal elements (XSEs) communicate the dose of X chromosomes to the regulatory-switch gene Sex-lethal (Sxl) during Drosophila sex determination. Unequal XSE expression in precellular XX and XY nuclei ensures that only XX embryos will activate the establishment promoter, SxlPe, to produce a pulse of the RNA-binding protein, SXL [1]. Once XSE protein concentrations have been assessed, SxlPe is inactivated and the maintenance promoter, SxlPm, is turned on in both sexes; however, only in females is SXL present to direct the SxlPm-derived transcripts to be spliced into functional mRNA [2, 3]. Thereafter, Sxl is maintained in the on state by positive autoregulatory RNA splicing [2]. Once set in the stable on (female) or off (male) state, Sxl controls somatic sexual development through control of downstream effectors of sexual differentiation and dosage compensation [1, 4]. Most XSEs encode transcription factors that bind SxlPe, but the XSE unpaired (upd) encodes a secreted ligand for the JAK/STAT pathway [5-7]. We show that although STAT directly regulates SxlPe, it is dispensable for promoter activation. Instead, JAK/STAT is needed to maintain high-level SxlPe expression in order to ensure Sxl autoregulation in XX embryos. Thus, upd is a unique XSE that augments, rather than defines, the initial sex-determination signal.
Collapse
Affiliation(s)
- Frank W Avila
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
14
|
Paszek P, Lipniacki T, Brasier AR, Tian B, Nowak DE, Kimmel M. Stochastic effects of multiple regulators on expression profiles in eukaryotes. J Theor Biol 2004; 233:423-33. [PMID: 15652150 DOI: 10.1016/j.jtbi.2004.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/04/2004] [Accepted: 10/19/2004] [Indexed: 11/22/2022]
Abstract
The stochastic nature of gene regulation still remains not fully understood. In eukaryotes, the stochastic effects are primarily attributable to the binary nature of genes, which are considered either switched "on" or "off" due to the action of the transcription factors binding to the promoter. In the time period when the gene is activated, bursts of mRNA transcript are produced. In the present paper, we investigate regulation of gene expression at the single cell level. We propose a mechanism of gene regulation, which is able to explain the observed distinct transcription profiles assuming the number of co-regulatory activities, without attempting to identify the specific proteins involved. The model is motivated by our experiments on NF-kappaB-dependent genes in HeLa cells. Our experimental data shows that NF-kappaB-dependent genes can be stratified into three characteristic groups according to their expression profiles: early, intermediate and late having maximum of expression at about 1, 3 and 6 h, respectively, from the beginning of TNF stimulation. We provide a tractable analytical approach, not only in the terms of expected expression profiles and their moments, which corresponds to the measurements on the cell population, but also in the terms of single cell behavior. Comparison between these two modes of description reveals that single cells behave qualitatively different from the cell population. This analysis provides insights useful for understanding of microarray experiments.
Collapse
Affiliation(s)
- Pawel Paszek
- Department of Statistics, Rice University, 6100 Main Street, MS-138, Houston, TX 77005, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Bielinska B, Lü J, Sturgill D, Oliver B. Core promoter sequences contribute to ovo-B regulation in the Drosophila melanogaster germline. Genetics 2004; 169:161-72. [PMID: 15371353 PMCID: PMC1350745 DOI: 10.1534/genetics.104.033118] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Utilization of tightly linked ovo-A vs. ovo-B germline promoters results in the expression of OVO-A and OVO-B, C(2)H(2) transcription factors with different N -termini, and different effects on target gene transcription and on female germline development. We show that two sex-determination signals, the X chromosome number within the germ cells and a female soma, differentially regulate ovo-B and ovo-A. We have previously shown that OVO regulates ovarian tumor transcription by binding the transcription start site. We have explored the regulation of the ovo-B promoter using an extensive series of transgenic reporter gene constructs to delimit cis-regulatory sequences as assayed in wild-type and sex-transformed flies and flies with altered ovo dose. Minimum regulated expression of ovo-B requires a short region flanking the transcription start site, suggesting that the ovo-B core promoter bears regulatory information in addition to a "basal" activity. In support of this idea, the core promoter region binds distinct factors in ovary and testis extracts, but not in soma extracts, suggesting that regulatory complexes form at the start site. This idea is further supported by the evolutionarily conserved organization of OVO binding sites at or near the start sites of ovo loci in other flies.
Collapse
Affiliation(s)
- Beata Bielinska
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|