1
|
Lyu L, Zhang X, Gao Y, Zhang T, Fu J, Stover NA, Gao F. From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:31-49. [PMID: 38433968 PMCID: PMC10901763 DOI: 10.1007/s42995-023-00213-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/27/2023] [Indexed: 03/05/2024]
Abstract
Genomes are incredibly dynamic within diverse eukaryotes and programmed genome rearrangements (PGR) play important roles in generating genomic diversity. However, genomes and chromosomes in metazoans are usually large in size which prevents our understanding of the origin and evolution of PGR. To expand our knowledge of genomic diversity and the evolutionary origin of complex genome rearrangements, we focus on ciliated protists (ciliates). Ciliates are single-celled eukaryotes with highly fragmented somatic chromosomes and massively scrambled germline genomes. PGR in ciliates occurs extensively by removing massive amounts of repetitive and selfish DNA elements found in the silent germline genome during development of the somatic genome. We report the partial germline genomes of two spirotrich ciliate species, namely Strombidium cf. sulcatum and Halteria grandinella, along with the most compact and highly fragmented somatic genome for S. cf. sulcatum. We provide the first insights into the genome rearrangements of these two species and compare these features with those of other ciliates. Our analyses reveal: (1) DNA sequence loss through evolution and during PGR in S. cf. sulcatum has combined to produce the most compact and efficient nanochromosomes observed to date; (2) the compact, transcriptome-like somatic genome in both species results from extensive removal of a relatively large number of shorter germline-specific DNA sequences; (3) long chromosome breakage site motifs are duplicated and retained in the somatic genome, revealing a complex model of chromosome fragmentation in spirotrichs; (4) gene scrambling and alternative processing are found throughout the core spirotrichs, offering unique opportunities to increase genetic diversity and regulation in this group. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00213-x.
Collapse
Affiliation(s)
- Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xue Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yunyi Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tengteng Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jinyu Fu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625 USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
2
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
3
|
Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted Tales: Insights into Genome Diversity of Ciliates Using Single-Cell 'Omics. Genome Biol Evol 2018; 10:1927-1939. [PMID: 29945193 PMCID: PMC6101598 DOI: 10.1093/gbe/evy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
The emergence of robust single-cell 'omics techniques enables studies of uncultivable species, allowing for the (re)discovery of diverse genomic features. In this study, we combine single-cell genomics and transcriptomics to explore genome evolution in ciliates (a > 1 Gy old clade). Analysis of the data resulting from these single-cell 'omics approaches show: 1) the description of the ciliates in the class Karyorelictea as "primitive" is inaccurate because their somatic macronuclei contain loci of varying copy number (i.e., they have been processed by genome rearrangements from the zygotic nucleus); 2) gene-sized somatic chromosomes exist in the class Litostomatea, consistent with Balbiani's (1890) observation of giant chromosomes in this lineage; and 3) gene scrambling exists in the underexplored Postciliodesmatophora (the classes Heterotrichea and Karyorelictea, abbreviated here as the Po-clade), one of two major clades of ciliates. Together these data highlight the complex evolutionary patterns underlying germline genome architectures in ciliates and provide a basis for further exploration of principles of genome evolution in diverse microbial lineages.
Collapse
Affiliation(s)
- Xyrus X Maurer-Alcalá
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego.,Department of Computer Science and Engineering, University of California San Diego, San Diego.,Center for Microbiome Innovation, University of California San Diego, San Diego
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
4
|
Lawrence TJ, Kauffman KT, Amrine KCH, Carper DL, Lee RS, Becich PJ, Canales CJ, Ardell DH. FAST: FAST Analysis of Sequences Toolbox. Front Genet 2015; 6:172. [PMID: 26042145 PMCID: PMC4437040 DOI: 10.3389/fgene.2015.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.
Collapse
Affiliation(s)
- Travis J Lawrence
- Quantitative and Systems Biology Program, University of California, Merced Merced, CA, USA
| | - Kyle T Kauffman
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, Merced Merced, CA, USA
| | - Katherine C H Amrine
- Quantitative and Systems Biology Program, University of California, Merced Merced, CA, USA ; Department of Viticulture and Enology, University of California, Davis Davis, CA, USA
| | - Dana L Carper
- Quantitative and Systems Biology Program, University of California, Merced Merced, CA, USA
| | - Raymond S Lee
- School of Engineering, University of California, Merced Merced, CA, USA
| | - Peter J Becich
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, Merced Merced, CA, USA
| | - Claudia J Canales
- School of Engineering, University of California, Merced Merced, CA, USA
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced Merced, CA, USA ; Molecular Cell Biology Unit, School of Natural Sciences, University of California, Merced Merced, CA, USA
| |
Collapse
|
5
|
Analyses of alternatively processed genes in ciliates provide insights into the origins of scrambled genomes and may provide a mechanism for speciation. mBio 2015; 6:mBio.01998-14. [PMID: 25650397 PMCID: PMC4324306 DOI: 10.1128/mbio.01998-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromosome rearrangements occur in a variety of eukaryotic life cycles, including during the development of the somatic macronuclear genome in ciliates. Previous work on the phyllopharyngean ciliate Chilodonella uncinata revealed that macronuclear β-tubulin and protein kinase gene families share alternatively processed germ line segments nested within divergent regions. To study genome evolution in this ciliate further, we characterized two additional alternatively processed gene families from two cryptic species of the ciliate morphospecies C. uncinata: those encoding histidine acid phosphatase protein (Hap) and leishmanolysin family protein (Lei). Analyses of the macronuclear Hap and Lei sequences reveal that each gene family consists of three members in the macronucleus that are marked by identical regions nested among highly divergent regions. Investigation of the micronuclear Hap sequences revealed a complex pattern in which the three macronuclear sequences are derived either from a single micronuclear region or from a combination of this shared region recombined with additional duplicate micronuclear copies of Hap. We propose a model whereby gene scrambling evolves by gene duplication followed by partial and reciprocal degradation of the duplicate sequences. In this model, alternative processing represents an intermediate step in the evolution of scrambled genes. Finally, we speculate on the possible role of genome architecture in speciation in ciliates by describing what might happen if changes in alternatively processed loci occur in subdivided populations. Genome rearrangements occur in a variety of eukaryotic cells and serve as an important mechanism for generating genomic diversity. The unusual genome architecture of ciliates with separate germline and somatic nuclei in each cell, provides an ideal system to study further principles of genome evolution. Previous analyses revealed complex forms of chromosome rearrangements, including gene scrambling and alternative processing of germ line chromosomes. Here we describe more complex rearrangements between germ line and somatic chromosomes than previously seen in alternatively processed gene families. Drawing on the present and previous findings, we propose a model in which alternative processing of duplicated micronuclear regions represents an intermediate stage in the evolution of scrambled genes. Under this model, alternative processing may provide insights into a mechanism for speciation in ciliates. Our data on gene scrambling and alternative processing also enhance views on the dynamic nature of genomes across the eukaryotic tree of life.
Collapse
|
6
|
Evolution of Germline-Limited Sequences in Two Populations of the Ciliate Chilodonella uncinata. J Mol Evol 2012; 74:140-6. [DOI: 10.1007/s00239-012-9493-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|
7
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
8
|
Katz LA, Kovner AM. Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:480-8. [PMID: 20700892 DOI: 10.1002/jez.b.21354] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In ciliates, chromosomal rearrangements occur during the development of the somatic macronuclear genome from the germline micronuclear genome. These rearrangements are extensive in three ciliate classes-Armophorea, Spirotrichea, and Phyllopharyngea-generating a macronucleus with up to 20,000,000 gene-sized chromosomes. Earlier, we have shown that these three classes also share elevated rates of protein evolution relative to other ciliates. To assess the evolution of germline-limited sequences in the class Phyllopharyngea, we used a combination of traditional and walking PCR to analyze micronuclear copies of multiple genes from two lines of the morphospecies Chilodonella uncinata for which we had previously characterized macronuclear sequences. Analyses of the resulting data yield three main results: (1) conserved macronuclear (somatic) regions are found within rapidly evolving micronuclear (germline) regions; (2) gene scrambling exists within this ciliate lineage; and (3) alternative processing of micronuclear regions yields diverse macronuclear beta-tubulin paralogs. To our knowledge, this is the first study to demonstrate gene scrambling outside the nonsister class Spirotrichea, and to show that alternative processing of scrambled genes generates diversity in gene families. Intriguingly, the Spirotrichea and Phyllopharyngea are also united in having transient "giant" polytene chromosomes, gene-sized somatic chromosomes, and elevated rates of protein evolution. We hypothesize that this suite of characters enables these ciliates to enjoy the benefits of asexuality while still maintaining the ability to go through sexual cycles. The data presented here add to the growing evidence of the dynamic nature of eukaryotic genomes within diverse lineages across the tree of life.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | |
Collapse
|
9
|
Angeleska A, Jonoska N, Saito M, Landweber LF. RNA-guided DNA assembly. J Theor Biol 2007; 248:706-20. [PMID: 17669433 DOI: 10.1016/j.jtbi.2007.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/31/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
We propose molecular models for homologous DNA recombination events that are guided by either double-stranded RNA (dsRNA) or single-stranded RNA (ssRNA) templates. The models are applied to explain DNA rearrangements in some groups of ciliates, such as Stylonychia or Oxytricha, where extensive gene rearrangement occurs during differentiation of a somatic macronucleus from a germline micronucleus. We describe a model for RNA template guided DNA recombination, such that the template serves as a catalyst that remains unchanged after DNA recombination. This recombination can be seen as topological braiding of the DNA, with the template-guided alignment proceeding through DNA branch migration. We show that a virtual knot diagram can provide a physical representation of the DNA at the time of recombination. Schematically, the braiding process can be represented as a crossing in the virtual knot diagram. The homologous recombination corresponds to removal of the crossings in the knot diagram (called smoothing). We show that if all recombinations are performed at the same time (i.e., simultaneous smoothings of the crossings) then one of the resulting DNA molecules will always contain all of the gene segments in their correct, linear order, which produces the mature DNA sequence.
Collapse
Affiliation(s)
- Angela Angeleska
- Department of Mathematics and Statistics, University of South Florida, USA.
| | | | | | | |
Collapse
|
10
|
Chang WJ, Addis VM, Li AJ, Axelsson E, Ardell DH, Landweber LF. Intron Evolution and Information processing in the DNA polymerase alpha gene in spirotrichous ciliates: a hypothesis for interconversion between DNA and RNA deletion. Biol Direct 2007; 2:6. [PMID: 17270054 PMCID: PMC1805493 DOI: 10.1186/1745-6150-2-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/01/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The somatic DNA molecules of spirotrichous ciliates are present as linear chromosomes containing mostly single-gene coding sequences with short 5' and 3' flanking regions. Only a few conserved motifs have been found in the flanking DNA. Motifs that may play roles in promoting and/or regulating transcription have not been consistently detected. Moreover, comparing subtelomeric regions of 1,356 end-sequenced somatic chromosomes failed to identify more putatively conserved motifs. RESULTS We sequenced and compared DNA and RNA versions of the DNA polymerase alpha (pol alpha) gene from nine diverged spirotrichous ciliates. We identified a G-C rich motif aaTACCGC(G/C/T) upstream from transcription start sites in all nine pol alpha orthologs. Furthermore, we consistently found likely polyadenylation signals, similar to the eukaryotic consensus AAUAAA, within 35 nt upstream of the polyadenylation sites. Numbers of introns differed among orthologs, suggesting independent gain or loss of some introns during the evolution of this gene. Finally, we discuss the occurrence of short direct repeats flanking some introns in the DNA pol alpha genes. These introns flanked by direct repeats resemble a class of DNA sequences called internal eliminated sequences (IES) that are deleted from ciliate chromosomes during development. CONCLUSION Our results suggest that conserved motifs are present at both 5' and 3' untranscribed regions of the DNA pol alpha genes in nine spirotrichous ciliates. We also show that several independent gains and losses of introns in the DNA pol alpha genes have occurred in the spirotrichous ciliate lineage. Finally, our statistical results suggest that proven introns might also function in an IES removal pathway. This could strengthen a recent hypothesis that introns evolve into IESs, explaining the scarcity of introns in spirotrichs. Alternatively, the analysis suggests that ciliates might occasionally use intron splicing to correct, at the RNA level, failures in IES excision during developmental DNA elimination.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Victoria M Addis
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Anya J Li
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elin Axelsson
- Linnaeus Centre for Bioinformatics, Uppsala University, Box 598, SE 751 24 Uppsala Sweden
| | - David H Ardell
- Linnaeus Centre for Bioinformatics, Uppsala University, Box 598, SE 751 24 Uppsala Sweden
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Möllenbeck M, Cavalcanti ARO, Jönsson F, Lipps HJ, Landweber LF. Interconversion of germline-limited and somatic DNA in a scrambled gene. J Mol Evol 2006; 63:69-73. [PMID: 16755354 DOI: 10.1007/s00239-005-0166-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 02/02/2006] [Indexed: 11/28/2022]
Abstract
Ciliates have a somatic and a germline nucleus; after sexual conjugation a new somatic nucleus forms from the new zygotic germline nucleus. Formation of the somatic nucleus involves precise elimination of a large portion of DNA sequences from the germline. Here we compare the architecture of the germline and somatic versions of the actin I gene in two geographically isolated strains of Stylonychia lemnae. We show that the structure of the germline gene is surprisingly mercurial, with the distinction between germline-limited and somatic sequences variable over the course of evolution. This is, to our knowledge, the first example of evolutionary swapping of retained versus deleted sequences during ciliate development, with sequences deleted during development that are specifically retained in another strain.
Collapse
Affiliation(s)
- Matthias Möllenbeck
- Institute of Cell Biology, Witten/Herdecke University, 58448, Witten, Germany
| | | | | | | | | |
Collapse
|
12
|
Chang WJ, Kuo S, Landweber LF. A new scrambled gene in the ciliate Uroleptus. Gene 2005; 368:72-7. [PMID: 16316727 DOI: 10.1016/j.gene.2005.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/06/2005] [Accepted: 10/11/2005] [Indexed: 11/20/2022]
Abstract
In the germline micronucleus of spirotrichous ciliates, the gene segments, or macronuclear destined sequences (MDSs), that give rise to the somatic macronucleus are interrupted by internal eliminated sequences (IESs). For some genes, the MDSs are not arranged sequentially, but rather are scrambled, in the micronucleus. Three scrambled genes have been extensively studied in many species: actin I, alpha-telomere binding protein, and DNA polymerase alpha. However, in the past decade, no new scrambled genes have been reported, and the prevalence of scrambled genes is still an important question. To screen for scrambled genes, we completely sequenced 11 macronuclear chromosomes in the spirotrich Uroleptus sp., and then pursued their micronuclear organization. This allowed us to identify new scrambled genes, which also display novel features. In this study we describe one of these newly discovered scrambled genes. This gene, tentatively named USG1 (Unknown Scrambled Gene 1), encodes a putative protein of 1016 aa. While the function of this protein product is not clear, dN/dS calculated from the two alleles suggests the encoded protein is under purifying selection. USG1 consists of 16 germline MDSs, of which 14 are located on one locus. The other locus, which is at least 3 kb away from the main locus, contains two scrambled MDSs separated by a nonscrambled IES. Curiously, one MDS and its outgoing (3') pointer (direct repeat) overlap intron splice sites, indicating that these DNA sequences may be under dual (or multiple) constraints. Our findings identify a new scrambled gene in the micronuclear genome of a spirotrichous ciliate, and suggest that even more complicated structures may be present.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
13
|
Chang WJ, Bryson PD, Liang H, Shin MK, Landweber LF. The evolutionary origin of a complex scrambled gene. Proc Natl Acad Sci U S A 2005; 102:15149-54. [PMID: 16217011 PMCID: PMC1257744 DOI: 10.1073/pnas.0507682102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some species of ciliates undergo massive DNA elimination and genome rearrangement to construct gene-sized "chromosomes" in their somatic nucleus. An example is the extensively scrambled DNA polymerase alpha gene that is broken into 48 pieces and distributed over two unlinked loci in Stylonychia. To understand the emergence of this complex phenomenon during evolution, we examined DNA polymerase alpha genes in several earlier diverging species, representing evolutionary intermediates. Mapping these data onto an evolutionary tree suggests that this gene became extensively fragmented and scrambled over evolutionary time through a series of steps, each leading to greater complexity. Our results also suggest a possible mechanism for intron loss by deletion of intron sequences as DNA during development of the somatic nucleus.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
14
|
Kuo S, Chang WJ, Landweber LF. Complex germline architecture: two genes intertwined on two loci. Mol Biol Evol 2005; 23:4-6. [PMID: 16162864 DOI: 10.1093/molbev/msj017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The germline micronuclear genome of some ciliated protists can be scrambled, with coding segments disordered relative to the expressed macronuclear genome. Here, we report a surprisingly complex pair of genes that assemble from interwoven segments on two germline loci in the ciliate Uroleptus. This baroque organization requires two scrambled genes to be disentangled from each other from two clusters in the genome, one containing segments 1-2-4-5-6-8-11-13-15-16 and the other 7-9-3-10-12-14, with pieces 1-5 comprising the first gene and 6-16 the second gene. Both genes remain linked in the somatic genome on a 1.5-kb "nanochromosome." This study is the first to reveal that two genes can become scrambled during evolution with their coding segments intertwined. These twin scrambled genes underscore the beauty and exceptions of protist genome architecture, pointing to the critical need for evolutionary biologists to survey protist genomes broadly.
Collapse
|