1
|
Li L, Scott WS, Khristich AN, Armenia JF, Mirkin SM. Recurrent DNA nicks drive massive expansions of (GAA) n repeats. Proc Natl Acad Sci U S A 2024; 121:e2413298121. [PMID: 39585990 PMCID: PMC11626148 DOI: 10.1073/pnas.2413298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Over 50 hereditary degenerative disorders are caused by expansions of short tandem DNA repeats (STRs). (GAA)n repeat expansions are responsible for Friedreich's ataxia as well as late-onset cerebellar ataxias (LOCAs). Thus, the mechanisms of (GAA)n repeat expansions attract broad scientific attention. To investigate the role of DNA nicks in this process, we utilized a CRISPR-Cas9 nickase system to introduce targeted nicks adjacent to the (GAA)n repeat tract. We found that DNA nicks 5' of the (GAA)100 run led to a dramatic increase in both the rate and scale of its expansion in dividing cells. Strikingly, they also promoted large-scale expansions of carrier- and large normal-size (GAA)n repeats, recreating, in a model system, the expansion events that occur in human pedigrees. DNA nicks 3' of the (GAA)100 repeat led to a smaller but significant increase in the expansion rate as well. Our genetic analysis implies that in dividing cells, conversion of nicks into double-strand breaks (DSBs) during DNA replication followed by DSB or fork repair leads to repeat expansions. Finally, we showed that 5' GAA-strand nicks increase expansion frequency in nondividing yeast cells, albeit to a lesser extent than in dividing cells.
Collapse
Affiliation(s)
- Liangzi Li
- Department of Biology, Tufts University, Medford, MA02155
| | - W. Shem Scott
- Department of Biology, Tufts University, Medford, MA02155
| | | | | | | |
Collapse
|
2
|
Barata T, Duarte I, Futschik ME. Integration of Stemness Gene Signatures Reveals Core Functional Modules of Stem Cells and Potential Novel Stemness Genes. Genes (Basel) 2023; 14:genes14030745. [PMID: 36981016 PMCID: PMC10048104 DOI: 10.3390/genes14030745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Stem cells encompass a variety of different cell types which converge on the dual capacity to self-renew and differentiate into one or more lineages. These characteristic features are key for the involvement of stem cells in crucial biological processes such as development and ageing. To decipher their underlying genetic substrate, it is important to identify so-called stemness genes that are common to different stem cell types and are consistently identified across different studies. In this meta-analysis, 21 individual stemness signatures for humans and another 21 for mice, obtained from a variety of stem cell types and experimental techniques, were compared. Although we observed biological and experimental variability, a highly significant overlap between gene signatures was identified. This enabled us to define integrated stemness signatures (ISSs) comprised of genes frequently occurring among individual stemness signatures. Such integrated signatures help to exclude false positives that can compromise individual studies and can provide a more robust basis for investigation. To gain further insights into the relevance of ISSs, their genes were functionally annotated and connected within a molecular interaction network. Most importantly, the present analysis points to the potential roles of several less well-studied genes in stemness and thus provides promising candidates for further experimental validation.
Collapse
Affiliation(s)
- Tânia Barata
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, Plymouth PL6 8BU, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London W12 0NN, UK
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
3
|
Zapatka M, Pociño-Merino I, Heluani-Gahete H, Bermúdez-López M, Tarrés M, Ibars E, Solé-Soler R, Gutiérrez-Escribano P, Apostolova S, Casas C, Aragon L, Wellinger R, Colomina N, Torres-Rosell J. Sumoylation of Smc5 Promotes Error-free Bypass at Damaged Replication Forks. Cell Rep 2019; 29:3160-3172.e4. [DOI: 10.1016/j.celrep.2019.10.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
|
4
|
Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. Proc Natl Acad Sci U S A 2017; 114:2663-2668. [PMID: 28223526 DOI: 10.1073/pnas.1618555114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gene-gene or gene-drug interactions are typically quantified using fitness as a readout because the data are continuous and easily measured in high throughput. However, to what extent fitness captures the range of other phenotypes that show synergistic effects is usually unknown. Using Saccharomyces cerevisiae and focusing on a matrix of DNA repair mutants and genotoxic drugs, we quantify 76 gene-drug interactions based on both mutation rate and fitness and find that these parameters are not connected. Independent of fitness defects, we identified six cases of synthetic hypermutation, where the combined effect of the drug and mutant on mutation rate was greater than predicted. One example occurred when yeast lacking RAD1 were exposed to cisplatin, and we characterized this interaction using whole-genome sequencing. Our sequencing results indicate mutagenesis by cisplatin in rad1Δ cells appeared to depend almost entirely on interstrand cross-links at GpCpN motifs. Interestingly, our data suggest that the following base on the template strand dictates the addition of the mutated base. This result differs from cisplatin mutation signatures in XPF-deficient Caenorhabditis elegans and supports a model in which translesion synthesis polymerases perform a slippage and realignment extension across from the damaged base. Accordingly, DNA polymerase ζ activity was essential for mutagenesis in cisplatin-treated rad1Δ cells. Together these data reveal the potential to gain new mechanistic insights from nonfitness measures of gene-drug interactions and extend the use of mutation accumulation and whole-genome sequencing analysis to define DNA repair mechanisms.
Collapse
|
5
|
Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase. Genetics 2016; 204:975-986. [PMID: 27585847 PMCID: PMC5105872 DOI: 10.1534/genetics.116.192211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/25/2016] [Indexed: 01/25/2023] Open
Abstract
Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis.
Collapse
|
6
|
McDonald MJ, Yu YH, Guo JF, Chong SY, Kao CF, Leu JY. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae. SCIENCE ADVANCES 2016; 2:e1501033. [PMID: 27386516 PMCID: PMC4928981 DOI: 10.1126/sciadv.1501033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.
Collapse
Affiliation(s)
| | - Yen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jheng-Fen Guo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics 2016; 203:667-75. [PMID: 27075725 DOI: 10.1534/genetics.115.184317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, however, homology to only one of the ends is present, or if homologies to the two ends are situated far away from each other or in the wrong orientation, REC blocks the rapid initiation of new DNA synthesis from the synapsed end(s) and repair is carried out by the break-induced replication (BIR) machinery after a long pause. Here we report that the simultaneous deletion of two 3'→5' helicases, Sgs1 and Mph1, largely abolishes the REC-mediated lag normally observed during the repair of large gaps and BIR substrates, which now get repaired nearly as rapidly and efficiently as GC substrates. Deletion of SGS1 and MPH1 also produces a nearly additive increase in the efficiency of both BIR and long gap repair; this increase is epistatic to that seen upon Rad51 overexpression. However, Rad51 overexpression fails to mimic the acceleration in repair kinetics that is produced by sgs1Δ mph1Δ double deletion.
Collapse
|
8
|
MTE1 Functions with MPH1 in Double-Strand Break Repair. Genetics 2016; 203:147-57. [PMID: 26920759 DOI: 10.1534/genetics.115.185454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.
Collapse
|
9
|
Shared genetic pathways contribute to the tolerance of endogenous and low-dose exogenous DNA damage in yeast. Genetics 2014; 198:519-30. [PMID: 25060101 DOI: 10.1534/genetics.114.168617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA damage that escapes repair and blocks replicative DNA polymerases is tolerated by bypass mechanisms that fall into two general categories: error-free template switching and error-prone translesion synthesis. Prior studies of DNA damage responses in Saccharomyces cerevisiae have demonstrated that repair mechanisms are critical for survival when a single, high dose of DNA damage is delivered, while bypass/tolerance mechanisms are more important for survival when the damage level is low and continuous (acute and chronic damage, respectively). In the current study, epistatic interactions between DNA-damage tolerance genes were examined and compared when haploid yeast cells were exposed to either chronic ultraviolet light or chronic methyl methanesulfonate. Results demonstrate that genes assigned to error-free and error-prone bypass pathways similarly promote survival in the presence of each type of chronic damage. In addition to using defined sources of chronic damage, rates of spontaneous mutations generated by the Pol ζ translesion synthesis DNA polymerase (complex insertions in a frameshift-reversion assay) were used to infer epistatic interactions between the same genes. Similar epistatic interactions were observed in analyses of spontaneous mutation rates, suggesting that chronic DNA-damage responses accurately reflect those used to tolerate spontaneous lesions. These results have important implications when considering what constitutes a safe and acceptable level of exogenous DNA damage.
Collapse
|
10
|
Roles of DNA helicases in the mediation and regulation of homologous recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:185-202. [PMID: 23161012 DOI: 10.1007/978-1-4614-5037-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that eliminates DNA double-strand breaks from chromosomes, repairs injured DNA replication forks, and helps orchestrate meiotic chromosome segregation. Recent studies have shown that DNA helicases play multifaceted roles in HR mediation and regulation. In particular, the S. cerevisiae Sgs1 helicase and its human ortholog BLM helicase are involved in not only the resection of the primary lesion to generate single-stranded DNA to prompt the assembly of the HR machinery, but they also function in somatic cells to suppress the formation of chromosome arm crossovers during HR. On the other hand, the S. cerevisiae Mph1 and Srs2 helicases, and their respective functional equivalents in other eukaryotes, suppress spurious HR events and favor the formation of noncrossovers via distinct mechanisms. Thus, the functional integrity of the HR process and HR outcomes are dependent upon these helicase enzymes. Since mutations in some of these helicases lead to cancer predisposition in humans and mice, studies on them have clear relevance to human health and disease.
Collapse
|
11
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chavez A, Agrawal V, Johnson FB. Homologous recombination-dependent rescue of deficiency in the structural maintenance of chromosomes (Smc) 5/6 complex. J Biol Chem 2010; 286:5119-25. [PMID: 21138837 DOI: 10.1074/jbc.m110.201608] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The essential and evolutionarily conserved Smc5-Smc6 complex (Smc5/6) is critical for the maintenance of genome stability. Partial loss of Smc5/6 function yields several defects in DNA repair, which are rescued by inactivation of the homologous recombination (HR) machinery. Thus HR is thought to be toxic to cells with defective Smc5/6. Recent work has highlighted a role for Smc5/6 and the Sgs1 DNA helicase in preventing the accumulation of unresolved HR intermediates. Here we investigate how deletion of MPH1, encoding the orthologue of the human FANCM DNA helicase, rescues the DNA damage sensitivity of smc5/6 but not sgs1Δ mutants. We find that MPH1 deletion diminishes accumulation of HR intermediates within both smc5/6 and sgs1Δ cells, suggesting that MPH1 deletion is sufficient to decrease the use of template switch recombination (TSR) to bypass DNA lesions. We further explain how avoidance of TSR is nonetheless insufficient to rescue defects in sgs1Δ mutants, by demonstrating a requirement for Sgs1, along with the post-replicative repair (PRR) and HR machinery, in a pathway that operates in mph1Δ mutants. In addition, we map the region of Mph1 that binds Smc5, and describe a novel allele of MPH1 encoding a protein unable to bind Smc5 (mph1-Δ60). Remarkably, mph1-Δ60 supports normal growth and responses to DNA damaging agents, indicating that Smc5/6 does not simply restrain the recombinogenic activity of Mph1 via direct binding. These data as a whole highlight a role for Smc5/6 and Sgs1 in the resolution of Mph1-dependent HR intermediates.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine., University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
13
|
Abstract
Homologous recombination plays a key role in the maintenance of genome integrity, especially during DNA replication and the repair of double-stranded DNA breaks (DSBs). Just a single un-repaired break can lead to aneuploidy, genetic aberrations or cell death. DSBs are caused by a vast number of both endogenous and exogenous agents including genotoxic chemicals or ionizing radiation, as well as through replication of a damaged template DNA or the replication fork collapse. It is essential for cell survival to recognise and process DSBs as well as other toxic intermediates and launch most appropriate repair mechanism. Many helicases have been implicated to play role in these processes, however their detail roles, specificities and co-operativity in the complex protein-protein interaction networks remain unclear. In this review we summarize the current knowledge about Saccharomyces cerevisiae helicase Srs2 and its effect on multiple DNA metabolic processes that generally affect genome stability. It would appear that Srs2 functions as an “Odd-Job Man” in these processes to make sure that the jobs proceed when and where they are needed.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
14
|
Defects in DNA lesion bypass lead to spontaneous chromosomal rearrangements and increased cell death. EUKARYOTIC CELL 2009; 9:315-24. [PMID: 20008080 DOI: 10.1128/ec.00260-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rev3 polymerase and Mph1 DNA helicase participate in error-prone and error-free pathways, respectively, for the bypassing of template lesions during DNA replication. Here we have investigated the role of these pathways and their genetic interaction with recombination factors, other nonreplicative DNA helicases, and DNA damage checkpoint components in the maintenance of genome stability, viability, and sensitivity to the DNA-damaging agent methyl methanesulfonate (MMS). We find that cells lacking Rev3 and Mph1 exhibit a synergistic, Srs2-dependent increase in the rate of accumulating spontaneous, gross chromosomal rearrangements, suggesting that the suppression of point mutations by deletion of REV3 may lead to chromosomal rearrangements. While mph1Delta is epistatic to homologous recombination (HR) genes, both Rad51 and Rad52, but not Rad59, are required for normal growth of the rev3Delta mutant and are essential for survival of rev3Delta cells during exposure to MMS, indicating that Mph1 acts in a Rad51-dependent, Rad59-independent subpathway of HR-mediated lesion bypass. Deletion of MPH1 helicase leads to synergistic DNA damage sensitivity increases in cells with chl1Delta or rrm3Delta helicase mutations, whereas mph1Delta is hypostatic to sgs1Delta. Previously reported slow growth of mph1Delta srs2Delta cells is accompanied by G(2)/M arrest and fully suppressed by disruption of the Mec3-dependent DNA damage checkpoint. We propose a model for replication fork rescue mediated by translesion DNA synthesis and homologous recombination that integrates the role of Mph1 in unwinding D loops and its genetic interaction with Rev3 and Srs2-regulated pathways in the suppression of spontaneous genome rearrangements and in mutation avoidance.
Collapse
|
15
|
Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc Natl Acad Sci U S A 2009; 106:21252-7. [PMID: 19995966 DOI: 10.1073/pnas.0908258106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Delta and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Delta does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.
Collapse
|
16
|
Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 2009; 30:684-93. [PMID: 19948885 DOI: 10.1128/mcb.00863-09] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unrepaired DNA lesions can block the progression of the replication fork, leading to genomic instability and cancer in higher-order eukaryotes. In Saccharomyces cerevisiae, replication through DNA lesions can be mediated by translesion synthesis DNA polymerases, leading to error-free or error-prone damage bypass, or by Rad5-mediated template switching to the sister chromatid that is inherently error free. While translesion synthesis pathways are highly conserved from yeast to humans, very little is known of a Rad5-like pathway in human cells. Here we show that a human homologue of Rad5, HLTF, can facilitate fork regression and has a role in replication of damaged DNA. We found that HLTF is able to reverse model replication forks, a process which depends on its double-stranded DNA translocase activity. Furthermore, from analysis of isolated dually labeled chromosomal fibers, we demonstrate that in vivo, HLTF promotes the restart of replication forks blocked at DNA lesions. These findings suggest that HLTF can promote error-free replication of damaged DNA and support a role for HLTF in preventing mutagenesis and carcinogenesis, providing thereby for its potential tumor suppressor role.
Collapse
|
17
|
Abstract
DEAD box proteins are a family of putative RNA helicases associated with all aspects of cellular metabolism involving the modification of RNA secondary structure. DDX1 is a member of the DEAD box protein family that is overexpressed in a subset of retinoblastoma and neuroblastoma cell lines and tumors. DDX1 is found primarily in the nucleus, where it forms two to four large aggregates called DDX1 bodies. Here, we report a rapid redistribution of DDX1 in cells exposed to ionizing radiation, resulting in the formation of numerous foci that colocalize with gamma-H2AX and phosphorylated ATM foci at sites of DNA double-strand breaks (DSBs). The formation of DDX1 ionizing-radiation-induced foci (IRIF) is dependent on ATM, which was shown to phosphorylate DDX1 both in vitro and in vivo. The treatment of cells with RNase H prevented the formation of DDX1 IRIF, suggesting that DDX1 is recruited to sites of DNA damage containing RNA-DNA structures. We have shown that DDX1 has RNase activity toward single-stranded RNA, as well as ADP-dependent RNA-DNA- and RNA-RNA-unwinding activities. We propose that DDX1 plays an RNA clearance role at DSB sites, thereby facilitating the template-guided repair of transcriptionally active regions of the genome.
Collapse
|
18
|
Mutants defective in Rad1-Rad10-Slx4 exhibit a unique pattern of viability during mating-type switching in Saccharomyces cerevisiae. Genetics 2008; 179:1807-21. [PMID: 18579504 DOI: 10.1534/genetics.108.090654] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient repair of DNA double-strand breaks (DSBs) requires the coordination of checkpoint signaling and enzymatic repair functions. To study these processes during gene conversion at a single chromosomal break, we monitored mating-type switching in Saccharomyces cerevisiae strains defective in the Rad1-Rad10-Slx4 complex. Rad1-Rad10 is a structure-specific endonuclease that removes 3' nonhomologous single-stranded ends that are generated during many recombination events. Slx4 is a known target of the DNA damage response that forms a complex with Rad1-Rad10 and is critical for 3'-end processing during repair of DSBs by single-strand annealing. We found that mutants lacking an intact Rad1-Rad10-Slx4 complex displayed RAD9- and MAD2-dependent cell cycle delays and decreased viability during mating-type switching. In particular, these mutants exhibited a unique pattern of dead and switched daughter cells arising from the same DSB-containing cell. Furthermore, we observed that mutations in post-replicative lesion bypass factors (mms2Delta, mph1Delta) resulted in decreased viability during mating-type switching and conferred shorter cell cycle delays in rad1Delta mutants. We conclude that Rad1-Rad10-Slx4 promotes efficient repair during gene conversion events involving a single 3' nonhomologous tail and propose that the rad1Delta and slx4Delta mutant phenotypes result from inefficient repair of a lesion at the MAT locus that is bypassed by replication-mediated repair.
Collapse
|
19
|
Flott S, Alabert C, Toh GW, Toth R, Sugawara N, Campbell DG, Haber JE, Pasero P, Rouse J. Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single-strand annealing mode of DNA repair in budding yeast. Mol Cell Biol 2007; 27:6433-45. [PMID: 17636031 PMCID: PMC2099619 DOI: 10.1128/mcb.00135-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Budding yeast (Saccharomyces cerevisiae) Slx4 is essential for cell viability in the absence of the Sgs1 helicase and for recovery from DNA damage. Here we report that cells lacking Slx4 have difficulties in completing DNA synthesis during recovery from replisome stalling induced by the DNA alkylating agent methyl methanesulfonate (MMS). Although DNA synthesis restarts during recovery, cells are left with unreplicated gaps in the genome despite an increase in translesion synthesis. In this light, epistasis experiments show that SLX4 interacts with genes involved in error-free bypass of DNA lesions. Slx4 associates physically, in a mutually exclusive manner, with two structure-specific endonucleases, Rad1 and Slx1, but neither of these enzymes is required for Slx4 to promote resistance to MMS. However, Rad1-dependent DNA repair by single-strand annealing (SSA) requires Slx4. Strikingly, phosphorylation of Slx4 by the Mec1 and Tel1 kinases appears to be essential for SSA but not for cell viability in the absence of Sgs1 or for cellular resistance to MMS. These results indicate that Slx4 has multiple functions in responding to DNA damage and that a subset of these are regulated by Mec1/Tel1-dependent phosphorylation.
Collapse
Affiliation(s)
- Sonja Flott
- MRC Protein Phosphorylation Unit, James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
21
|
Guo Y, Breeden LL, Zarbl H, Preston BD, Eaton DL. Expression of a human cytochrome p450 in yeast permits analysis of pathways for response to and repair of aflatoxin-induced DNA damage. Mol Cell Biol 2005; 25:5823-33. [PMID: 15988000 PMCID: PMC1168797 DOI: 10.1128/mcb.25.14.5823-5833.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/11/2005] [Accepted: 04/25/2005] [Indexed: 01/21/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in strains defective in nucleotide excision repair (NER) (rad14), postreplication repair (PRR) (rad6, rad18, mms2, and rad5), homologous recombinational repair (HRR) (rad51 and rad54), base excision repair (BER) (apn1 apn2), nonhomologous end-joining (NHEJ) (yku70), mismatch repair (MMR) (pms1), translesion synthesis (TLS) (rev3), and checkpoints (mec1-1, mec1-1 rad53, rad9, and rad17). Together our data suggest the involvement of homologous recombination and nucleotide excision repair, postreplication repair, and checkpoints in the repair and/or tolerance of AFB1-induced DNA damage in the yeast model. Rev3 appears to mediate AFB1-induced mutagenesis when error-free pathways are compromised. The results further suggest unique roles for Rad5 and abasic endonuclease-dependent DNA intermediates in regulating AFB1-induced mutagenicity.
Collapse
Affiliation(s)
- Yingying Guo
- Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105-6099, USA
| | | | | | | | | |
Collapse
|
22
|
Prakash R, Krejci L, Van Komen S, Anke Schürer K, Kramer W, Sung P. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3' to 5' DNA helicase. J Biol Chem 2005; 280:7854-60. [PMID: 15634678 DOI: 10.1074/jbc.m413898200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MPH1 (mutator pHenotype 1) gene of Saccharomyces cerevisiae was identified on the basis of elevated spontaneous mutation rates of haploid cells deleted for this gene. Further studies showed that MPH1 functions to channel DNA lesions into an error-free DNA repair pathway. The Mph1 protein contains the seven conserved motifs of the superfamily 2 (SF2) family of nucleic acid unwinding enzymes. Genetic analyses have found epistasis of the mph1 deletion with mutations in the RAD52 gene group that mediates homologous recombination and DNA repair by homologous recombination. To begin dissecting the biochemical functions of the MPH1-encoded product, we have expressed it in yeast cells and purified it to near homogeneity. We show that Mph1 has a robust ATPase function that requires single-stranded DNA for activation. Consistent with its homology to members of the SF2 helicase family, we find a DNA helicase activity in Mph1. We present data to demonstrate that the Mph1 DNA helicase activity is fueled by ATP hydrolysis and has a 3' to 5' polarity with respect to the DNA strand on which this protein translocates. The DNA helicase activity of Mph1 is enhanced by the heterotrimeric single-stranded DNA binding protein replication protein A. These results, thus, establish Mph1 as an ATP-dependent DNA helicase, and the availability of purified Mph1 should facilitate efforts at deciphering the role of this protein in homologous recombination and mutation avoidance.
Collapse
Affiliation(s)
- Rohit Prakash
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|