1
|
Richmond ML. The imperative for inclusion: A gender analysis of genetics. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 90:247-264. [PMID: 34740148 DOI: 10.1016/j.shpsa.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
It has now been more than thirty years since Joan Wallach Scott (1986) argued that gender is a legitimate and necessary category of historical analysis that applies to all fields, including genetics. In the intervening years, a substantial body of work has appeared that adds women to the historiography of genetics. While this is a necessary component for including gender as a category of analysis in genetics, it is not sufficient. Gender analysis involves the broader goal of integrating gender into the interrogation of how social factors within research practices and institutional organization influence scientific work and knowledge production in genetics. This article argues for the imperative for inclusion-including both women and gender analysis-which, taken together, not only provide a more equitable and informative picture of the discipline's development, but also yield a historiography that more faithfully reflects the activity of doing science.
Collapse
|
2
|
Singh PB, Shloma VV, Belyakin SN. Maternal regulation of chromosomal imprinting in animals. Chromosoma 2019; 128:69-80. [PMID: 30719566 PMCID: PMC6536480 DOI: 10.1007/s00412-018-00690-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 11/29/2022]
Abstract
Chromosomal imprinting requires an epigenetic system that "imprints" one of the two parental chromosomes such that it results in a heritable (cell-to-cell) change in behavior of the "imprinted" chromosome. Imprinting takes place when the parental genomes are separate, which occurs during gamete formation in the respective germ-lines and post-fertilization during the period when the parental pro-nuclei lie separately within the ooplasm of the zygote. In the mouse, chromosomal imprinting is regulated by germ-line specific DNA methylation. But the methylation machinery in the respective germ-lines does not discriminate between imprinted and non-imprinted regions. As a consequence, the mouse oocyte nucleus contains over a thousand oocyte-specific germ-line differentially methylated regions (gDMRs). Upon fertilization, the sperm provides a few hundred sperm-specific gDMRs of its own. Combined, there are around 1600 imprinted and non-imprinted gDMRs in the pro-nuclei of the newly fertilized zygote. It is a remarkable fact that beginning in the maternal ooplasm, there are mechanisms that manage to preserve DNA methylation at ~ 26 known imprinted gDMRs in the face of the ongoing genome-wide DNA de-methylation that characterizes pre-implantation development. Specificity is achieved through the binding of KRAB-zinc finger proteins to their cognate recognition sequences within the gDMRs of imprinted genes. This in turn nucleates the assembly of localized heterochromatin-like complexes that preserve methylation at imprinted gDMRs through recruitment of the maintenance methyl transferase Dnmt1. These studies have shown that a germ-line imprint may cause parent-of-origin-specific behavior only if "licensed" by mechanisms that operate post-fertilization. Study of the germ-line and post-fertilization contributions to the imprinting of chromosomes in classical insect systems (Coccidae and Sciaridae) show that the ooplasm is the likely site where imprinting takes place. By comparing molecular and genetic studies across these three species, we suggest that mechanisms which operate post-fertilization play a key role in chromosomal imprinting phenomena in animals and conserved components of heterochromatin are shared by these mechanisms.
Collapse
Affiliation(s)
- Prim B Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Astana, Z05K4F4, Kazakhstan.
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation.
| | - Victor V Shloma
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation
- Genomics Laboratory, Institute of Molecular and Cellular Biology SD RAS, Lavrentyev ave, 8/2, Novosibirsk, 630090, Russian Federation
| | - Stepan N Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov str. 2, Novosibirsk, 630090, Russian Federation
- Genomics Laboratory, Institute of Molecular and Cellular Biology SD RAS, Lavrentyev ave, 8/2, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
3
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Gerbi SA. The path from student to mentor and from chromosomes to replication to genomics. Mol Biol Cell 2016; 27:3194-3196. [PMID: 27799493 PMCID: PMC5170850 DOI: 10.1091/mbc.e16-07-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The American Society for Cell Biology Women in Cell Biology Sandra Masur Senior Award recognizes leadership in scientific accomplishments and in mentoring, which are intertwined. My development as a scientist reflects important mentors in my life, including my father and Joe Gall, who is my “Doktor Vater.” In turn, as an established investigator, my scientific successes in researching 1) chromosomes, their replication and genomics, and 2) ribosomes, their structure, evolution, and biogenesis, reflects the hard work of my students and postdocs, for whom I act as a mentor, guiding them in their research and along their career paths.
Collapse
Affiliation(s)
- Susan A Gerbi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912
| |
Collapse
|
5
|
Vikram P, Swamy BPM, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Henry A, Singh NK, Kumar A. Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 2015; 5:14799. [PMID: 26458744 PMCID: PMC4602206 DOI: 10.1038/srep14799] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Green Revolution (GR) rice varieties are high yielding but typically drought sensitive. This is partly due to the tight linkage between the loci governing plant height and drought tolerance. This linkage is illustrated here through characterization of qDTY1.1, a QTL for grain yield under drought that co-segregates with the GR gene sd1 for semi-dwarf plant height. We report that the loss of the qDTY1.1 allele during the GR was due to its tight linkage in repulsion with the sd1 allele. Other drought-yield QTLs (qDTY) also showed tight linkage with traits rejected in GR varieties. Genetic diversity analysis for 11 different qDTY regions grouped GR varieties separately from traditional drought-tolerant varieties, and showed lower frequency of drought tolerance alleles. The increased understanding and breaking of the linkage between drought tolerance and undesirable traits has led to the development of high-yielding drought-tolerant dwarf lines with positive qDTY alleles and provides new hope for extending the benefits of the GR to drought-prone rice-growing regions.
Collapse
Affiliation(s)
- Prashant Vikram
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | - B. P. Mallikarjuna Swamy
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | - Shalabh Dixit
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | - Renu Singh
- National Research Center for Plant Biology, Indian Agricultural Research Institute, New Delhi, India 110012
| | - Bikram P. Singh
- National Research Center for Plant Biology, Indian Agricultural Research Institute, New Delhi, India 110012
| | - Berta Miro
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | - Ajay Kohli
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | - Amelia Henry
- Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
| | - N. K. Singh
- National Research Center for Plant Biology, Indian Agricultural Research Institute, New Delhi, India 110012
| | - Arvind Kumar
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
6
|
Singh S, Singh RP, Bhavani S, Huerta-Espino J, Eugenio LVE. QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1367-75. [PMID: 23440380 DOI: 10.1007/s00122-013-2058-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 02/08/2013] [Indexed: 05/23/2023]
Abstract
Races of stem rust fungus pose a major threat to wheat production worldwide. We mapped adult plant resistance (APR) to Ug99 in 141 lines of a PBW343/Muu recombinant inbred lines (RILs) population by phenotyping them for three seasons at Njoro, Kenya in field trials and genotyping them with Diversity Arrays Technology (DArT) markers. Moderately susceptible parent PBW343 and APR parent Muu displayed mean stem rust severities of 66.6 and 5 %, respectively. The mean disease severity of RILs ranged from 1 to 100 %, with an average of 23.3 %. Variance components for stem rust severity were highly significant (p < 0.001) for RILs and seasons and the heritability (h (2)) for the disease ranged between 0.78 and 0.89. Quantitative trait loci (QTL) analysis identified four consistent genomic regions on chromosomes 2BS, 3BS, 5BL, and 7AS; three contributed by Muu (QSr.cim-2BS, QSr.cim-3BS and QSr.cim-7AS) and one (QSr.cim-5BL) derived from PBW343. RILs with flanking markers for these QTLs had significantly lower severities than those lacking the markers, and combinations of QTLs had an additive effect, significantly enhancing APR. The QTL identified on chromosome 3BS mapped to the matching region as the known APR gene Sr2. Four additional QTLs on chromosomes 1D, 3A, 4B, and 6A reduced disease severity significantly at least once in three seasons. Our results show a complex nature of APR to stem rust where Sr2 and other minor slow rusting resistance genes can confer a higher level of resistance when present together.
Collapse
Affiliation(s)
- Sukhwinder Singh
- International Maize and Wheat Improvement Center, Apdo. Postal 6-641, 06600 Mexico, DF, Mexico.
| | | | | | | | | |
Collapse
|
7
|
Molecular and cytological characterization of repetitive DNA sequences from the centromeric heterochromatin of Sciara coprophila. Chromosoma 2011; 120:387-97. [PMID: 21533987 DOI: 10.1007/s00412-011-0320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Sciara coprophila (Diptera, Nematocera) constitutes a classic model to analyze unusual chromosome behavior such as the somatic elimination of paternal X chromosomes, the elimination of the whole paternal, plus non-disjunction of the maternal X chromosome at male meiosis. The molecular organization of the heterochromatin in S. coprophila is mostly unknown except for the ribosomal DNA located in the X chromosome pericentromeric heterochromatin. The characterization of the centromeric regions, thus, is an essential and required step for the establishment of S. coprophila as a model system to study fundamental mechanisms of chromosome segregation. To accomplish such a study, heterochromatic sections of the X chromosome centromeric region from salivary glands polytene chromosomes were microdissected and microcloned. Here, we report the identification and characterization of two tandem repeated DNA sequences from the pericentromeric region of the X chromosome, a pericentromeric RTE element and an AT-rich centromeric satellite. These sequences will be important tools for the cloning of S. coprophila centromeric heterochromatin using libraries of large genomic clones.
Collapse
|