1
|
Bubb KL, Hamm MO, Tullius TW, Min JK, Ramirez-Corona B, Mueth NA, Ranchalis J, Mao Y, Bergstrom EJ, Vollger MR, Trapnell C, Cuperus JT, Stergachis AB, Queitsch C. The regulatory potential of transposable elements in maize. NATURE PLANTS 2025:10.1038/s41477-025-02002-z. [PMID: 40360747 DOI: 10.1038/s41477-025-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
The genomes of flowering plants consist largely of transposable elements (TEs), some of which modulate gene regulation and function. However, the repetitive nature of TEs and difficulty of mapping individual TEs by short-read sequencing have hindered our understanding of their regulatory potential. Here we show that long-read chromatin fibre sequencing (Fiber-seq) comprehensively identifies accessible chromatin regions (ACRs) and CpG methylation across the maize genome. We uncover stereotypical ACR patterns at young TEs that degenerate with evolutionary age, resulting in TE enhancers preferentially marked by a novel plant-specific epigenetic feature: simultaneous hyper-CpG methylation and chromatin accessibility. We show that TE ACRs are co-opted as gene promoters and that ACR-containing TEs can facilitate gene amplification. Lastly, we uncover a pervasive epigenetic signature-hypo-5mCpG methylation and diffuse chromatin accessibility-directing TEs to specific loci, including the loci that sparked McClintock's discovery of TEs.
Collapse
Affiliation(s)
- Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Morgan O Hamm
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Thomas W Tullius
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joseph K Min
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Erik J Bergstrom
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Marand AP, Jiang L, Gomez-Cano F, Minow MAA, Zhang X, Mendieta JP, Luo Z, Bang S, Yan H, Meyer C, Schlegel L, Johannes F, Schmitz RJ. The genetic architecture of cell type-specific cis regulation in maize. Science 2025; 388:eads6601. [PMID: 40245149 DOI: 10.1126/science.ads6601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
Gene expression and complex phenotypes are determined by the activity of cis-regulatory elements. However, an understanding of how extant genetic variants affect cis regulation remains limited. Here, we investigated the consequences of cis-regulatory diversity using single-cell genomics of more than 0.7 million nuclei across 172 Zea mays (maize) inbreds. Our analyses pinpointed cis-regulatory elements distinct to domesticated maize and revealed how historical transposon activity has shaped the cis-regulatory landscape. Leveraging population genetics principles, we fine-mapped about 22,000 chromatin accessibility-associated genetic variants with widespread cell type-specific effects. Variants in TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR-binding sites were the most prevalent determinants of chromatin accessibility. Finally, integrating chromatin accessibility-associated variants, organismal trait variation, and population differentiation revealed how local adaptation has rewired regulatory networks in unique cellular contexts to alter maize flowering.
Collapse
Affiliation(s)
| | - Luguang Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fabio Gomez-Cano
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mark A A Minow
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - John P Mendieta
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Ziliang Luo
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Sohyun Bang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Cullan Meyer
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Luca Schlegel
- Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Frank Johannes
- Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
3
|
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1160. [PMID: 40284048 PMCID: PMC12030055 DOI: 10.3390/plants14081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
4
|
Peng Y, Wang Y, Liu Y, Fang X, Cheng L, Long Q, Su D, Zhang T, Shi X, Xu X, Xu Q, Wang N, Zhang F, Liu Z, Xiao H, Yao J, Tian L, Hu W, Chen S, Wang H, Huang S, Gaut BS, Zhou Y. The genomic and epigenomic landscapes of hemizygous genes across crops with contrasting reproductive systems. Proc Natl Acad Sci U S A 2025; 122:e2422487122. [PMID: 39918952 PMCID: PMC11831139 DOI: 10.1073/pnas.2422487122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Hemizygous genes, which are present on only one of the two homologous chromosomes of diploid organisms, have been mainly studied in the context of sex chromosomes and sex-linked genes. However, these genes can also occur on the autosomes of diploid plants due to structural variants (SVs), such as a deletion/insertion of one allele, and this phenomenon largely unexplored in plants. Here, we investigated the genomic and epigenomic landscapes of hemizygous genes across 22 genomes with varying propagation histories: eleven clonal lineages, seven outcrossed samples, and four inbred and putatively homozygous genomes. We identified SVs leading to genic hemizygosity. As expected, very few genes (0.01 to 1.2%) were hemizygous in the homozygous genomes, representing negative controls. Hemizygosity was appreciable among outcrossed lineages, averaging 8.7% of genes, but consistently elevated for the clonal samples at 13.8% genes, likely reflecting heterozygous SV accumulation during clonal propagation. Compared to diploid genes, hemizygous genes were more often situated in centromeric than telomeric regions and experienced weaker purifying selection. They also had reduced levels of expression, averaging ~20% of the expression levels of diploid genes, violating the evolutionary model of dosage compensation. We also detected higher DNA methylation levels in hemizygous genes and transposable elements, which may contribute to their reduced expression. Finally, expression profiles showed that hemizygous genes were more specifically expressed in contexts related to fruit development, organ differentiation, and stress responses. Overall, hemizygous genes accumulate in clonally propagated lineages and display distinct genetic and epigenetic features compared to diploid genes, shedding unique insights into genetic studies and breeding programs of clonal crops.
Collapse
Affiliation(s)
- Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Yiwen Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Yuting Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Xinyue Fang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Lin Cheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Qiming Long
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Dalu Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Tianhao Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Xiaoya Shi
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Qi Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Fan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Jin Yao
- School of Management, Shenzhen Polytechnic University, Shenzhen518055, China
| | - Ling Tian
- School of Management, Shenzhen Polytechnic University, Shenzhen518055, China
| | - Wei Hu
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Songbi Chen
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Haibo Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization) Ministry of Agriculture, Fruit Research Institute, Chinese Academy of Agricultural Sciences, Xingcheng125100, Liaoning, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| |
Collapse
|
5
|
Srikant T, Gonzalo A, Bomblies K. Chromatin Accessibility and Gene Expression Vary Between a New and Evolved Autopolyploid of Arabidopsis arenosa. Mol Biol Evol 2024; 41:msae213. [PMID: 39404085 PMCID: PMC11518924 DOI: 10.1093/molbev/msae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Polyploids arise from whole-genome duplication (WGD) events, which have played important roles in genome evolution across eukaryotes. WGD can increase genome complexity, yield phenotypic novelty, and influence adaptation. Neo-polyploids have been reported to often show seemingly stochastic epigenetic and transcriptional changes, but this leaves open the question whether these changes persist in evolved polyploids. A powerful approach to address this is to compare diploids, neo-polyploids, and evolved polyploids of the same species. Arabidopsis arenosa is a species that allows us to do this-natural diploid and autotetraploid populations exist, while neo-tetraploids can be artificially generated. Here, we use ATAC-seq to assay local chromatin accessibility, and RNA-seq to study gene expression on matched leaf and petal samples from diploid, neo-tetraploid and evolved tetraploid A. arenosa. We found over 8,000 differentially accessible chromatin regions across all samples. These are largely tissue specific and show distinct trends across cytotypes, with roughly 70% arising upon WGD. Interestingly, only a small proportion is associated with expression changes in nearby genes. However, accessibility variation across cytotypes associates strongly with the number of nearby transposable elements. Relatively few genes were differentially expressed upon genome duplication, and ∼60% of these reverted to near-diploid levels in the evolved tetraploid, suggesting that most initial perturbations do not last. Our results provide new insights into how epigenomic and transcriptional mechanisms jointly respond to genome duplication and subsequent evolution of autopolyploids, and importantly, show that one cannot be directly predicted from the other.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Zhang C, Yang T, Luo X, Zhou X, Feng M, Yuan W. The chromatin accessibility and transcriptomic landscape of the aging mice cochlea and the identification of potential functional super-enhancers in age-related hearing loss. Clin Epigenetics 2024; 16:86. [PMID: 38965562 PMCID: PMC11225416 DOI: 10.1186/s13148-024-01702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Presbycusis, also referred to as age-related hearing loss (ARHL), is a condition that results from the cumulative effects of aging on an individual's auditory capabilities. Given the limited understanding of epigenetic mechanisms in ARHL, our research focuses on alterations in chromatin-accessible regions. METHODS We employed assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in conjunction with unique identifier (UID) mRNA-seq between young and aging cochleae, and conducted integrated analysis as well as motif/TF-gene prediction. Additionally, the essential role of super-enhancers (SEs) in the development of ARHL was identified by comparative analysis to previous research. Meanwhile, an ARHL mouse model and an aging mimic hair cell (HC) model were established with a comprehensive identification of senescence phenotypes to access the role of SEs in ARHL progression. RESULTS The control cochlear tissue exhibited greater chromatin accessibility than cochlear tissue affected by ARHL. Furthermore, the levels of histone 3 lysine 27 acetylation were significantly depressed in both aging cochlea and aging mimic HEI-OC1 cells, highlighting the essential role of SEs in the development of ARHL. The potential senescence-associated super-enhancers (SASEs) of ARHL were identified, most of which exhibited decreased chromatin accessibility. The majority of genes related to the SASEs showed obvious decreases in mRNA expression level in aging HCs and was noticeably altered following treatment with JQ1 (a commonly used SE inhibitor). CONCLUSION The chromatin accessibility in control cochlear tissue was higher than that in cochlear tissue affected by ARHL. Potential SEs involved in ARHL were identified, which might provide a basis for future therapeutics targeting SASEs related to ARHL.
Collapse
Affiliation(s)
- Chanyuan Zhang
- Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China
- Department of Otolaryngology and Head and Neck, Chongqing General Hospital, Chongqing, 401147, China
| | - Ting Yang
- Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China
- Department of Otolaryngology and Head and Neck, Chongqing General Hospital, Chongqing, 401147, China
| | - Xiaoqin Luo
- Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, 646099, China
| | - Xiaoqing Zhou
- Department of Otolaryngology and Head and Neck, Chongqing General Hospital, Chongqing, 401147, China
| | - Menglong Feng
- Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China
- Department of Otolaryngology and Head and Neck, Chongqing General Hospital, Chongqing, 401147, China
| | - Wei Yuan
- Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
- Department of Otolaryngology and Head and Neck, Chongqing General Hospital, Chongqing, 401147, China.
| |
Collapse
|
7
|
Zhou W, Shi H, Wang Z, Huang Y, Ni L, Chen X, Liu Y, Li H, Li C, Liu Y. Identification of Highly Repetitive Enhancers with Long-range Regulation Potential in Barley via STARR-seq. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae012. [PMID: 39167800 PMCID: PMC12016029 DOI: 10.1093/gpbjnl/qzae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 08/23/2024]
Abstract
Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active mark H3K4me3 and repressive mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ±100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This study specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.
Collapse
Affiliation(s)
- Wanlin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Ni
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xudong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haojie Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Manosalva Pérez N, Ferrari C, Engelhorn J, Depuydt T, Nelissen H, Hartwig T, Vandepoele K. MINI-AC: inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:280-301. [PMID: 37788349 DOI: 10.1111/tpj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, development, and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site (TFBS) information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFBS. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Julia Engelhorn
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thomas Hartwig
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| |
Collapse
|
9
|
Li M, Feng Y, Han Q, Yang Y, Shi Y, Zheng D, Zhang W. Genomic variations combined with epigenetic modifications rewire open chromatin in rice. PLANT PHYSIOLOGY 2023; 193:1880-1896. [PMID: 37539937 DOI: 10.1093/plphys/kiad440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Cis-regulatory elements (CREs) fine-tune gene transcription in eukaryotes. CREs with sequence variations play vital roles in driving plant or crop domestication. However, how global sequence and structural variations (SVs) are responsible for multilevel changes between indica and japonica rice (Oryza sativa) is still not fully elucidated. To address this, we conducted multiomic studies using MNase hypersensitivity sequencing (MH-seq) in combination with RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and bisulfite sequencing (BS-seq) between the japonica rice variety Nipponbare (NIP) and indica rice variety 93-11. We found that differential MNase hypersensitive sites (MHSs) exhibited some distinct intrinsic genomic sequence features between NIP and 93-11. Notably, through MHS-genome-wide association studies (GWAS) integration, we found that key sequence variations may be associated with differences of agronomic traits between NIP and 93-11, which is partly achieved by MHSs harboring CREs. In addition, SV-derived differential MHSs caused by transposable element (TE) insertion, especially by noncommon TEs among rice varieties, were associated with genes with distinct functions, indicating that TE-driven gene neo- or subfunctionalization is mediated by changes of chromatin openness. This study thus provides insights into how sequence and genomic SVs control agronomic traits of NIP and 93-11; it also provides genome-editing targets for molecular breeding aiming at improving favorable agronomic properties.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Qi Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Dongyang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
10
|
Marand AP, Eveland AL, Kaufmann K, Springer NM. cis-Regulatory Elements in Plant Development, Adaptation, and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:111-137. [PMID: 36608347 PMCID: PMC9881396 DOI: 10.1146/annurev-arplant-070122-030236] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.
Collapse
Affiliation(s)
| | | | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany;
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA;
| |
Collapse
|
11
|
Liang J, Kong L, Hu X, Fu C, Bai S. Chromosomal-level genome assembly of the high-quality Xian/Indica rice (Oryza sativa L.) Xiangyaxiangzhan. BMC PLANT BIOLOGY 2023; 23:94. [PMID: 36782126 PMCID: PMC9926808 DOI: 10.1186/s12870-023-04114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The indica rice variety XYXZ carries elite traits including appearance and eating quality. Here, we report the de novo assembly of XYXZ using Illumine paired-end whole-genome shotgun sequencing and Nanopore sequencing. We annotated 39,722 protein-coding genes in the 395.04 Mb assembly. In comparison to other cultivars, XYXZ showed a larger gene size including the transcripts and introns, and more exons per gene. And hundreds of ultra-long genes were also detected. A total of 4362 complete LTRs were annotated, and among them, many were located next to or in protein-coding genes including several genes related to rice quality. We observed the different distributions of LTRs in these genes among XYXZ, Nipponbare, and R498, implying these LTRs might potentially affect expressions of the proximal genes and rice quality. Overall, This chromosome-length genome assembly of XYXZ provides a valuable resource for gene discovery, genetic variation and evolution, and the breeding of high-quality rice.
Collapse
Affiliation(s)
- Jiayan Liang
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Leilei Kong
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xiaodan Hu
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chongyun Fu
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Song Bai
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Henning PM, Roalson EH, Mir W, McCubbin AG, Shore JS. Annotation of the Turnera subulata (Passifloraceae) Draft Genome Reveals the S-Locus Evolved after the Divergence of Turneroideae from Passifloroideae in a Stepwise Manner. PLANTS (BASEL, SWITZERLAND) 2023; 12:286. [PMID: 36679000 PMCID: PMC9862265 DOI: 10.3390/plants12020286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three S-genes. How supergenes and distyly evolved in Turnera, and the other Angiosperm families exhibiting distyly remain largely unknown. Unraveling the evolutionary origins in Turnera requires the generation of genomic resources and extensive phylogenetic analyses. Here, we present the annotated draft genome of the S-morph of distylous Turnera subulata. Our annotation allowed for phylogenetic analyses of the three S-genes' families across 56 plant species ranging from non-seed plants to eudicots. In addition to the phylogenetic analysis, we identified the three S-genes' closest paralogs in two species of Passiflora. Our analyses suggest that the S-locus evolved after the divergence of Passiflora and Turnera. Finally, to provide insights into the neofunctionalization of the S-genes, we compared expression patterns of the S-genes with close paralogs in Arabidopsis and Populus trichocarpa. The annotation of the T. subulata genome will provide a useful resource for future comparative work. Additionally, this work has provided insights into the convergent nature of distyly and the origin of supergenes.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Center for Genomic Science Innovation, University of Wisconsin Madison, 425 Henry Mall, Madison, WI 53706-1577, USA
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Wali Mir
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
13
|
Wang S, Qian YQ, Zhao RP, Chen LL, Song JM. Graph-based pan-genomes: increased opportunities in plant genomics. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:24-39. [PMID: 36255144 DOI: 10.1093/jxb/erac412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the development of sequencing technology and the great reduction in sequencing costs, an increasing number of plant genomes have been assembled, and numerous genomes have revealed large amounts of variations. However, a single reference genome does not allow the exploration of species diversity, and therefore the concept of pan-genome was developed. A pan-genome is a collection of all sequences available for a species, including a large number of consensus sequences, large structural variations, and small variations including single nucleotide polymorphisms and insertions/deletions. A simple linear pan-genome does not allow these structural variations to be intuitively characterized, so graph-based pan-genomes have been developed. These pan-genomes store sequence and structural variation information in the form of nodes and paths to store and display species variation information in a more intuitive manner. The key role of graph-based pan-genomes is to expand the coordinate system of the linear reference genome to accommodate more regions of genetic diversity. Here, we review the origin and development of graph-based pan-genomes, explore their application in plant research, and further highlight the application of graph-based pan-genomes for future plant breeding.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong-Qing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ru-Peng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
14
|
Srikant T, Yuan W, Berendzen KW, Contreras-Garrido A, Drost HG, Schwab R, Weigel D. Canalization of genome-wide transcriptional activity in Arabidopsis thaliana accessions by MET1-dependent CG methylation. Genome Biol 2022; 23:263. [PMID: 36539836 PMCID: PMC9768921 DOI: 10.1186/s13059-022-02833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite its conserved role on gene expression and transposable element (TE) silencing, genome-wide CG methylation differs substantially between wild Arabidopsis thaliana accessions. RESULTS To test our hypothesis that global reduction of CG methylation would reduce epigenomic, transcriptomic, and phenotypic diversity in A. thaliana accessions, we knock out MET1, which is required for CG methylation, in 18 early-flowering accessions. Homozygous met1 mutants in all accessions suffer from common developmental defects such as dwarfism and delayed flowering, in addition to accession-specific abnormalities in rosette leaf architecture, silique morphology, and fertility. Integrated analysis of genome-wide methylation, chromatin accessibility, and transcriptomes confirms that MET1 inactivation greatly reduces CG methylation and alters chromatin accessibility at thousands of loci. While the effects on TE activation are similarly drastic in all accessions, the quantitative effects on non-TE genes vary greatly. The global expression profiles of accessions become considerably more divergent from each other after genome-wide removal of CG methylation, although a few genes with diverse expression profiles across wild-type accessions tend to become more similar in mutants. Most differentially expressed genes do not exhibit altered chromatin accessibility or CG methylation in cis, suggesting that absence of MET1 can have profound indirect effects on gene expression and that these effects vary substantially between accessions. CONCLUSIONS Systematic analysis of MET1 requirement in different A. thaliana accessions reveals a dual role for CG methylation: for many genes, CG methylation appears to canalize expression levels, with methylation masking regulatory divergence. However, for a smaller subset of genes, CG methylation increases expression diversity beyond genetically encoded differences.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Present address: Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Kenneth Wayne Berendzen
- Plant Transformation and Flow Cytometry Facility, ZMBP, University of Tübingen, Tübingen, Germany
| | | | - Hajk-Georg Drost
- Computational Biology Group, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Klein SP, Anderson SN. The evolution and function of transposons in epigenetic regulation in response to the environment. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102277. [PMID: 35961279 DOI: 10.1016/j.pbi.2022.102277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) make up a major proportion of plant genomes. Despite their prevalence genome-wide, TEs are often tossed aside as "junk DNA" since they rarely cause phenotypes, and epigenetic mechanisms silence TEs to prevent them from causing deleterious mutations through movement. While this bleak picture of TEs in genomes is true on average, a growing number of examples across many plant species point to TEs as drivers of phenotypic diversity and novel stress responses. Examples of TE-influenced phenotypes illustrate the many ways that novel transposition events can alter local gene expression and how this relates to potential variation in plant responses to environmental stress. Since TE families and insertions at the locus level lack evolutionary conservation, advancements in the field will require TE experts across diverse species to identify and utilize TE variation in their own systems as a means of crop improvement.
Collapse
Affiliation(s)
- Stephanie P Klein
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah N Anderson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Characterization of Transposon-Derived Accessible Chromatin Regions in Rice (Oryza Sativa). Int J Mol Sci 2022; 23:ijms23168947. [PMID: 36012213 PMCID: PMC9408979 DOI: 10.3390/ijms23168947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence indicates that transposons or transposable elements (TEs)-derived accessible chromatin regions (ACRs) play essential roles in multiple biological processes by interacting with trans-acting factors. However, the function of TE-derived ACRs in the regulation of gene expression in the rice genome has not been well characterized. In this study, we examined the chromatin dynamics in six types of rice tissues and found that ~8% of ACRs were derived from TEs and exhibited distinct levels of accessibility and conservation as compared to those without TEs. TEs exhibited a TE subtype-dependent impact on ACR formation, which can be mediated by changes in the underlying DNA methylation levels. Moreover, we found that tissue-specific TE-derived ACRs might function in the tissue development through the modulation of nearby gene expression. Interestingly, many genes in domestication sweeps were found to overlap with TE-derived ACRs, suggesting their potential functions in the rice domestication. In addition, we found that the expression divergence of 1070 duplicate gene pairs were associated with TE-derived ACRs and had distinct distributions of TEs and ACRs around the transcription start sites (TSSs), which may experience different selection pressures. Thus, our study provides some insights into the biological implications of TE-derived ACRs in the rice genome. Our results imply that these ACRs are likely involved in the regulation of tissue development, rice domestication and functional divergence of duplicated genes.
Collapse
|
17
|
Li Z, Li M, Wang J. Asymmetric subgenomic chromatin architecture impacts on gene expression in resynthesized and natural allopolyploid Brassica napus. Commun Biol 2022; 5:762. [PMID: 35906482 PMCID: PMC9338098 DOI: 10.1038/s42003-022-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
Although asymmetric subgenomic epigenetic modification and gene expression have been revealed in the successful establishment of allopolyploids, the changes in chromatin accessibility and their relationship with epigenetic modifications and gene expression are poorly understood. Here, we synthetically analyzed chromatin accessibility, four epigenetic modifications and gene expression in natural allopolyploid Brassica napus, resynthesized allopolyploid B. napus, and diploid progenitors (B. rapa and B. oleracea). “Chromatin accessibility shock” occurred in both allopolyploidization and natural evolutionary processes, and genic accessible chromatin regions (ACRs) increased after allopolyploidization. ACRs associated with H3K27me3 modifications were more accessible than those with H3K27ac or H3K4me3. Although overall chromatin accessibility may be defined by H3K27me3, the enrichment of H3K4me3 and H3K27ac and depletion of DNA methylation around transcriptional start sites up-regulated gene expression. Moreover, we found that subgenome Cn exhibited higher chromatin accessibility than An, which depended on the higher chromatin accessibility of Cn-unique genes but not homologous genes. Changes in chromatin accessibility occuring during the process of allopolyploidization of Brassica napus are analysed using ATAC and ChIPseq, with differences in asymmetric chromatin accessibility between subgenomes of B. napus investigated.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
18
|
Zanini SF, Bayer PE, Wells R, Snowdon RJ, Batley J, Varshney RK, Nguyen HT, Edwards D, Golicz AA. Pangenomics in crop improvement-from coding structural variations to finding regulatory variants with pangenome graphs. THE PLANT GENOME 2022; 15:e20177. [PMID: 34904403 DOI: 10.1002/tpg2.20177] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 05/15/2023]
Abstract
Since the first reported crop pangenome in 2014, advances in high-throughput and cost-effective DNA sequencing technologies facilitated multiple such studies including the pangenomes of oilseed rape (Brassica napus L.), soybean [Glycine max (L.) Merr.], rice (Oryza sativa L.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.). Compared with single-reference genomes, pangenomes provide a more accurate representation of the genetic variation present in a species. By combining the genomic data of multiple accessions, pangenomes allow for the detection and annotation of complex DNA polymorphisms such as structural variations (SVs), one of the major determinants of genetic diversity within a species. In this review we summarize the current literature on crop pangenomics, focusing on their application to find candidate SVs involved in traits of agronomic interest. We then highlight the potential of pangenomes in the discovery and functional characterization of noncoding regulatory sequences and their variations. We conclude with a summary and outlook on innovative data structures representing the complete content of plant pangenomes including annotations of coding and noncoding elements and outcomes of transcriptomic and epigenomic experiments.
Collapse
Affiliation(s)
- Silvia F Zanini
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ. Giessen, Giessen, 35392, Germany
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Rachel Wells
- Dep. of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR47UH, UK
| | - Rod J Snowdon
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ. Giessen, Giessen, 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop Food Innovation, Food Futures Institute, Murdoch Univ., Murdoch, WA, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Agnieszka A Golicz
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ. Giessen, Giessen, 35392, Germany
| |
Collapse
|
19
|
Abraham-Juárez MJ, Barnes AC, Aragón-Raygoza A, Tyson D, Kur A, Strable J, Rellán-Álvarez R. The arches and spandrels of maize domestication, adaptation, and improvement. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102124. [PMID: 34715472 DOI: 10.1016/j.pbi.2021.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, 36821, Mexico
| | - Allison C Barnes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Unidad de Genómica Avanzada, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Guanajuato, Mexico
| | - Destiny Tyson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andi Kur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
20
|
Tonnessen BW, Bossa-Castro AM, Martin F, Leach JE. Intergenic spaces: a new frontier to improving plant health. THE NEW PHYTOLOGIST 2021; 232:1540-1548. [PMID: 34478160 DOI: 10.1111/nph.17706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To more sustainably mitigate the impact of crop diseases on plant health and productivity, there is a need for broader spectrum, long-lasting resistance traits. Defense response (DR) genes, located throughout the genome, participate in cellular and system-wide defense mechanisms to stave off infection by diverse pathogens. This multigenic resistance avoids rapid evolution of a pathogen to overcome host resistance. DR genes reside within resistance-associated quantitative trait loci (QTL), and alleles of DR genes in resistant varieties are more active during pathogen attack relative to susceptible haplotypes. Differential expression of DR genes results from polymorphisms in their regulatory regions, that includes cis-regulatory elements such as transcription factor binding sites as well as features that influence epigenetic structural changes to modulate chromatin accessibility during infection. Many of these elements are found in clusters, known as cis-regulatory modules (CRMs), which are distributed throughout the host genome. Regulatory regions involved in plant-pathogen interactions may also contain pathogen effector binding elements that regulate DR gene expression, and that, when mutated, result in a change in the plants' response. We posit that CRMs and the multiple regulatory elements that comprise them are potential targets for marker-assisted breeding for broad-spectrum, durable disease resistance.
Collapse
Affiliation(s)
- Bradley W Tonnessen
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Western Colorado Research Center, Colorado State University, 30624 Hwy 92, Hotchkiss, CO, 81419, USA
| | - Ana M Bossa-Castro
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Universidad de los Andes, Bogotá, 111711, Colombia
| | - Federico Martin
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jan E Leach
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|