1
|
Al-Jaf S, Soliman AY, El-Yazbi AF, Abd-Elrahman KS. Unveiling the Interplay: Neurovascular Coupling, Astrocytes and G Protein-Coupled Receptors in Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:271-285. [PMID: 39974631 PMCID: PMC11833731 DOI: 10.1021/acsptsci.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
Astrocytes are a type of glial cell that are involved in actively modulating synaptic plasticity, neurotransmitter homeostasis, and neuroinflammatory responses. More importantly, they coordinate neuronal activity and cerebral blood flow (CBF) in what is known as neurovascular coupling (NVC). NVC is an essential mechanism that maintains the high energy demand the brain requires by supplying continuous and rapid supply of oxygen and nutrients through CBF. Impairment in NVC is one of the key events that triggers a spiral of occurrences that lead to the clinical advancement of Alzheimer's disease (AD). It is yet to be determined what the molecular manifestations of NVC impairment relate to; nonetheless, it is believed that alterations in G protein-coupled receptors (GPCRs) are responsible for exacerbating these effects. In this review, we summarize the current evidence supporting the involvement of GPCRs on astrocytes in NVC and the pathophysiology of AD. Additionally, we propose potential research directions to further elucidate the underlying mechanisms and evaluate the feasibility of targeting specific GPCRs as a therapeutic strategy to correct brain blood flow and memory impairments associated with AD.
Collapse
Affiliation(s)
- Sanarya Al-Jaf
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alaa Y. Soliman
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed F. El-Yazbi
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Khaled S. Abd-Elrahman
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Wang J, Zhao J, Chen X, Yin B, Li X, Xie P. Alzheimer's disease diagnosis using rhythmic power changes and phase differences: a low-density EEG study. Front Aging Neurosci 2025; 16:1485132. [PMID: 39897456 PMCID: PMC11782140 DOI: 10.3389/fnagi.2024.1485132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Objectives The future emergence of disease-modifying treatments for dementia highlights the urgent need to identify reliable and easily accessible tools for diagnosing Alzheimer's disease (AD). Electroencephalography (EEG) is a non-invasive and cost-effective technique commonly used in the study of neurodegenerative disorders. However, the specific alterations in EEG biomarkers associated with AD remain unclear when using a limited number of electrodes. Methods We studied pathological characteristics of AD using low-density EEG data collected from 26 AD and 29 healthy controls (HC) during both eye closed (EC) and eye opened (EO) resting conditions. The analysis including power spectrum, phase lock value (PLV), and weighted lag phase index (wPLI) and power-to-power frequency coupling (theta/beta) analysis were applied to extract features in the delta, theta, alpha, and beta bands. Results During the EC condition, the AD group exhibited decreased alpha power compared to HC. Additionally, both analysis of PLV and wPLI in the theta band indicated that the alterations in the AD brain network predominantly involved in the frontal region with the opposite changes. Moreover, the AD group had increased frequency coupling in the frontal and central regions. Surprisingly, no group difference was found in the EO condition. Notably, decreased theta band functional connectivity within the fronto-central lobe and increased frequency coupling in frontal region were found in AD group from EC to EO. More importantly, the combination of EC and EO quantitative EEG features improved the inter-group classification accuracy when using support vector machine (SVM) in older adults with AD. These findings highlight the complementary nature of EC and EO conditions in assessing and differentiating AD cohorts. Conclusion Our results underscore the potential of utilizing low-density EEG data from resting-state paradigms, combined with machine learning techniques, to improve the identification and classification of AD.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Jiamei Zhao
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoling Chen
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Bowen Yin
- Department of Neurology, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Ping Xie
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| |
Collapse
|
3
|
Rzepliński R, Tarka S, Tomaszewski M, Kucewicz M, Acewicz A, Małachowski J, Ciszek B. Narrowings of the Deep Cerebral Perforating Arteries Ostia: Geometry, Structure, and Clinical Implications. J Stroke 2025; 27:52-64. [PMID: 39916454 PMCID: PMC11844661 DOI: 10.5853/jos.2024.01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of neurovascular diseases and various types of dementia is tightly connected to cerebral circulation. An area that requires further exploration is the system of deep cerebral perforating arteries-arteries branching directly from high-pressure intracranial arteries, supplying vital neural structures such as the internal capsule, and characterized by a diameter of well below 1 mm, which makes them difficult to visualize with standard radiological examinations. This study aimed to analyze the morphology of the perforator origins, which constitute connection points between high-pressure intracranial arteries and microcirculation. METHODS Twenty-three human basal ganglia specimens with the middle cerebral artery (MCA, including 172 perforating arteries) and ten brainstem specimens with the basilar artery (BA, including 162 perforating arteries) were prepared and scanned using microcomputed tomography. The geometry and structure of the perforating arteries were analyzed using radiological images and additional histological studies. RESULTS The ostia of the perforating arteries were ellipsoidal in shape with median stenosis severity of 23% and 20% for MCA and BA perforators, respectively. The local narrowing structure was typical of neointimal hyperplasia. Statistical analysis revealed that the severity of stenosis may be related to age and cardiovascular health. CONCLUSION Origins of the deep cerebral perforators are locally narrowed by neointimal hyperplasia, which may be a protective mechanism to adjust high blood pressure to the microcirculation. The narrowings may lead to chronic hypoperfusion and play a role in the pathophysiology of cerebral small vessel disease.
Collapse
Affiliation(s)
- Radosław Rzepliński
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
- First Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Tarka
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warsaw, Poland
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Tomaszewski
- Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
| | - Michał Kucewicz
- Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jerzy Małachowski
- Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
| | - Bogdan Ciszek
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
- Department of Paediatric Neurosurgery, Bogdanowicz Memorial Hospital for Children, Warsaw, Poland
| |
Collapse
|
4
|
Nair SS, Govindankutty MM, Balakrishnan M, Prasad K, Sathyaprabha TN, Udupa K. Investigation of Autonomic Dysfunction in Alzheimer's Disease-A Computational Model-Based Approach. Brain Sci 2023; 13:1322. [PMID: 37759923 PMCID: PMC10526304 DOI: 10.3390/brainsci13091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background and Objective: Alzheimer's disease (AD) is commonly accompanied by autonomic dysfunction. Investigating autonomic dysfunction's occurrence patterns and severity may aid in making a distinction between different dementia subtypes, as cardiac autonomic dysfunction and AD severity are correlated. Heart rate variability (HRV) allows for a non-invasive assessment of the autonomic nervous system (ANS). AD is characterized by cholinergic depletion. A computational model of ANS based on the kinetics of acetylcholine and norepinephrine is used to simulate HRV for various autonomic states. The model has the flexibility to suitably modulate the concentration of acetylcholine corresponding to different autonomic states. (2) Methods: Twenty clinically plausible AD patients are compared to 20 age- and gender-matched healthy controls using HRV measures. Statistical analysis is performed to identify the HRV parameters that vary significantly in AD. By modulating the acetylcholine concentration in a controlled manner, different autonomic states of Alzheimer's disease are simulated using the ANS model. (3) Results: In patients with AD, there is a significant decrease in vagal activity, sympathovagal imbalance with a dominant sympathetic activity, and change in the time domain, frequency domain, and nonlinear HRV characteristics. Simulated HRV features corresponding to 10 progressive states of AD are presented. (4) Conclusions: There is a significant difference in the HRV features during AD. As cholinergic depletion and autonomic dysfunction have a common neurological basis, autonomic function assessment can help in diagnosis and assessment of AD. Quantitative models may help in better comprehending the pathophysiology of the disease and assessment of its progress.
Collapse
Affiliation(s)
| | | | - Minimol Balakrishnan
- Model Engineering College, Cochin University of Science and Technology, Kochi 682022, India
| | - Krishna Prasad
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Talakad N. Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| |
Collapse
|
5
|
Moyaert P, Beun S, Achten E, Clement P. Effect of Acetylcholinesterase Inhibitors on Cerebral Perfusion and Cognition: A Systematic Review. J Alzheimers Dis 2023:JAD221125. [PMID: 37182871 DOI: 10.3233/jad-221125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Perfusion imaging has the potential to identify neurodegenerative disorders in a preclinical stage. However, to correctly interpret perfusion-derived parameters, the impact of perfusion modifiers should be evaluated. OBJECTIVE In this systematic review, the impact of acute and chronic intake of four acetylcholinesterase inhibitors (AChEIs) on cerebral perfusion in adults was investigated: physostigmine, donepezil, galantamine, and rivastigmine. RESULTS Chronic AChEI treatment results in an increase of cerebral perfusion in treatment-responsive patients with Alzheimer's disease, dementia with Lewy bodies, and Parkinson's disease dementia in the frontal, parietal, temporal, and occipital lobes, as well as the cingulate gyrus. These effects appear to be temporary, dose-related, and consistent across populations and different AChEI types. On the contrary, further perfusion decline was reported in patients not receiving AChEIs or not responding to the treatment. CONCLUSION AChEIs appear to be a potential perfusion modifier in neurodegenerative patients. More research focused on quantitative perfusion in both patients with and without a cholinergic deficit is needed to draw conclusions on whether AChEI intake should be considered when analyzing perfusion data.
Collapse
Affiliation(s)
- Paulien Moyaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Lawson Health Research Institute, London, Ontario, Canada
| | - Soetkin Beun
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Patricia Clement
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Thornton T, Mills D, Bliss E. Capsaicin: A Potential Treatment to Improve Cerebrovascular Function and Cognition in Obesity and Ageing. Nutrients 2023; 15:nu15061537. [PMID: 36986266 PMCID: PMC10057869 DOI: 10.3390/nu15061537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Impaired cognition is the primary symptom of dementia, which can lead to functional disability and reduced quality of life among an increasingly ageing population. Ageing is associated with increased oxidative stress, chronic low-grade systemic inflammation, and endothelial dysfunction, which reduces cerebrovascular function leading to cognitive decline. Chronic low-grade systemic inflammatory conditions, such as obesity, exacerbate this decline beyond normal ageing and predispose individuals to neurodegenerative diseases, such as dementia. Capsaicin, the major pungent molecule of chilli, has recently demonstrated improvements in cognition in animal models via activation of the transient receptor potential vanilloid channel 1 (TRPV1). Capsaicin-induced TRPV1 activation reduces adiposity, chronic low-grade systemic inflammation, and oxidative stress, as well as improves endothelial function, all of which are associated with cerebrovascular function and cognition. This review examines the current literature on capsaicin and Capsimax, a capsaicin supplement associated with reduced gastrointestinal irritation compared to capsaicin. Acute and chronic capsaicin treatment can improve cognition in animals. However, studies adequately assessing the effects of capsaicin on cerebrovascular function, and cognition in humans do not exist. Capsimax may be a potentially safe therapeutic intervention for future clinical trials testing the effects of capsaicin on cerebrovascular function and cognition.
Collapse
Affiliation(s)
- Tammy Thornton
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Molecular Biomarkers Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Edward Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Molecular Biomarkers Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
7
|
Munir R, Zaib S, Zia-ur-Rehman M, Hussain N, Chaudhry F, Younas MT, Zahra FT, Tajammul Z, Javid N, Dera AA, Ogaly HA, Khan I. Ultrasound-Assisted Synthesis of Piperidinyl-Quinoline Acylhydrazones as New Anti-Alzheimer's Agents: Assessment of Cholinesterase Inhibitory Profile, Molecular Docking Analysis, and Drug-like Properties. Molecules 2023; 28:molecules28052131. [PMID: 36903376 PMCID: PMC10004187 DOI: 10.3390/molecules28052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rubina Munir
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | | | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Faryal Chaudhry
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zainab Tajammul
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Noman Javid
- Chemistry Department (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (R.M.); (S.Z.); (I.K.)
| |
Collapse
|
8
|
González-Naranjo P, Pérez C, González-Sánchez M, Gironda-Martínez A, Ulzurrun E, Bartolomé F, Rubio-Fernández M, Martin-Requero A, Campillo NE, Páez JA. Multitarget drugs as potential therapeutic agents for alzheimer's disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors. J Enzyme Inhib Med Chem 2022; 37:2348-2356. [PMID: 36050834 PMCID: PMC9477487 DOI: 10.1080/14756366.2022.2117315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Multitarget drugs are a promising therapeutic approach against Alzheimer’s disease. In this work, a new family of 5-substituted indazole derivatives with a multitarget profile including cholinesterase and BACE1 inhibition is described. Thus, the synthesis and evaluation of a new class of 5-substituted indazoles has been performed. Pharmacological evaluation includes in vitro inhibitory assays on AChE/BuChE and BACE1 enzymes. Also, the corresponding competition studies on BuChE were carried out. Additionally, antioxidant properties have been calculated from ORAC assays. Furthermore, studies of anti-inflammatory properties on Raw 264.7 cells and neuroprotective effects in human neuroblastoma SH-SY5Y cells have been performed. The results of pharmacological tests have shown that some of these 5-substituted indazole derivatives 1–4 and 6 behave as AChE/BuChE and BACE1 inhibitors, simultaneously. In addition, some indazole derivatives showed anti-inflammatory (3, 6) and neuroprotective (1–4 and 6) effects against Aβ-induced cell death in human neuroblastoma SH-SY5Y cells with antioxidant properties.
Collapse
Affiliation(s)
| | | | | | | | - Eugenia Ulzurrun
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Fernando Bartolomé
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre, Madrid, Spain
| | - Marcos Rubio-Fernández
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angeles Martin-Requero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre, Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Instituto de Ciencias Matemáticas (CSIC), Madrid, Spain
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Madrid, Spain
| |
Collapse
|
9
|
The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Auton Neurosci 2022; 240:102985. [DOI: 10.1016/j.autneu.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
|
10
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
11
|
Ferreira D, Nedelska Z, Graff-Radford J, Przybelski SA, Lesnick TG, Schwarz CG, Botha H, Senjem ML, Fields JA, Knopman DS, Savica R, Ferman TJ, Graff-Radford NR, Lowe VJ, Jack CR, Petersen RC, Lemstra AW, van de Beek M, Barkhof F, Blanc F, Loureiro de Sousa P, Philippi N, Cretin B, Demuynck C, Hort J, Oppedal K, Boeve BF, Aarsland D, Westman E, Kantarci K. Cerebrovascular disease, neurodegeneration, and clinical phenotype in dementia with Lewy bodies. Neurobiol Aging 2021; 105:252-261. [PMID: 34130107 PMCID: PMC8338792 DOI: 10.1016/j.neurobiolaging.2021.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
We investigated whether cerebrovascular disease contributes to neurodegeneration and clinical phenotype in dementia with Lewy bodies (DLB). Regional cortical thickness and subcortical gray matter volumes were estimated from structural magnetic resonance imaging (MRI) in 165 DLB patients. Cortical and subcortical infarcts were recorded and white matter hyperintensities (WMHs) were assessed. Subcortical only infarcts were more frequent (13.3%) than cortical only infarcts (3.1%) or both subcortical and cortical infarcts (2.4%). Infarcts, irrespective of type, were associated with WMHs. A higher WMH volume was associated with thinner orbitofrontal, retrosplenial, and posterior cingulate cortices, smaller thalamus and pallidum, and larger caudate volume. A higher WMH volume was associated with the presence of visual hallucinations and lower global cognitive performance, and tended to be associated with the absence of probable rapid eye movement sleep behavior disorder. Presence of infarcts was associated with the absence of parkinsonism. We conclude that cerebrovascular disease is associated with gray matter neurodegeneration in patients with probable DLB, which may have implications for the multifactorial treatment of probable DLB.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Zuzana Nedelska
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | | | | | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Marleen van de Beek
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands; Queen Square Institute of Neurology, University College London, London, UK
| | - Frederic Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Paulo Loureiro de Sousa
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Nathalie Philippi
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Benjamin Cretin
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Catherine Demuynck
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Jakub Hort
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ketil Oppedal
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Stavanger Medical Imaging Laboratory (SMIL), Department of Radiology, Stavanger University Hospital, Stavanger, Norway; Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | | | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Heinrich M, Müller A, Lammers-Lietz F, Borchers F, Mörgeli R, Kruppa J, Zacharias N, Winterer G, Slooter AJC, Spies CD. Radiological, Chemical, and Pharmacological Cholinergic System Parameters and Neurocognitive Disorders in Older Presurgical Adults. J Gerontol A Biol Sci Med Sci 2021; 76:1029-1036. [PMID: 32710543 DOI: 10.1093/gerona/glaa182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A pre-existing neurocognitive disorder (NCD) is a relevant factor for the outcome of surgical patients. To improve understanding of these conditions, we investigated the association between parameters of the cholinergic system and NCD. METHOD This investigation is part of the BioCog project (www.biocog.eu), which is a prospective multicenter observational study including patients aged 65 years and older scheduled for elective surgery. Patients with a Mini-Mental State Examination (MMSE) score ≤23 points were excluded. Neurocognitive disorder was assessed according to the fifth Diagnostic and Statistical Manual of Mental Disorders criteria. The basal forebrain cholinergic system volume (BFCSV) was assessed with magnetic resonance imaging, the peripheral cholinesterase (ChE) activities with point-of-care measurements, and anticholinergic load by analyzing the long-term medication with anticholinergic scales (Anticholinergic Drug Scale [ADS], Anticholinergic Risk Scale [ARS], Anticholinergic Cognitive Burden Scale [ACBS]). The associations of BFCSV, ChE activities, and anticholinergic scales with NCD were studied with logistic regression analysis, adjusting for confounding factors. RESULTS A total of 797 participants (mean age 72 years, 42% females) were included. One hundred and eleven patients (13.9%) fulfilled criteria for mild NCD and 82 patients (10.3%) for major NCD criteria. We found that AcetylChE activity was associated with major NCD (odds ratio [95% confidence interval]: [U/gHB] 1.061 [1.010, 1.115]), as well as ADS score ([points] 1.353 [1.063, 1.723]) or ARS score, respectively ([points] 1.623 [1.100, 2.397]) with major NCD. However, we found no association between BFCSV or ButyrylChE activity with mild or major NCD. CONCLUSIONS AcetylChE activity and anticholinergic load were associated with major NCD. Future research should focus on the association of the cholinergic system and the development of postoperative delirium and postoperative NCD.
Collapse
Affiliation(s)
- Maria Heinrich
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Berlin Institute of Health (BIH), Germany
| | - Anika Müller
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Florian Lammers-Lietz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Rudolf Mörgeli
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jochen Kruppa
- Berlin Institute of Health (BIH), Germany.,Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | | | - Arjen J C Slooter
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
13
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
14
|
Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 2019; 141:1917-1933. [PMID: 29850777 DOI: 10.1093/brain/awy132] [Citation(s) in RCA: 1026] [Impact Index Per Article: 171.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that cholinergic transmission is likely to be critically important for memory, learning, attention and other higher brain functions. Several lines of research suggest additional roles for cholinergic systems in overall brain homeostasis and plasticity. As such, the brain's cholinergic system occupies a central role in ongoing research related to normal cognition and age-related cognitive decline, including dementias such as Alzheimer's disease. The cholinergic hypothesis of Alzheimer's disease centres on the progressive loss of limbic and neocortical cholinergic innervation. Neurofibrillary degeneration in the basal forebrain is believed to be the primary cause for the dysfunction and death of forebrain cholinergic neurons, giving rise to a widespread presynaptic cholinergic denervation. Cholinesterase inhibitors increase the availability of acetylcholine at synapses in the brain and are one of the few drug therapies that have been proven clinically useful in the treatment of Alzheimer's disease dementia, thus validating the cholinergic system as an important therapeutic target in the disease. This review includes an overview of the role of the cholinergic system in cognition and an updated understanding of how cholinergic deficits in Alzheimer's disease interact with other aspects of disease pathophysiology, including plaques composed of amyloid-β proteins. This review also documents the benefits of cholinergic therapies at various stages of Alzheimer's disease and during long-term follow-up as visualized in novel imaging studies. The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as we look ahead to future combination therapies that address symptoms as well as disease progression.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - M-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ezio Giacobini
- Department of Internal Medicine, Rehabilitation and Geriatrics, University of Geneva Hospitals, Geneva, Switzerland
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Ara S Khachaturian
- The Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020), Potomac, MD, USA
| | - Andrea Vergallo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund and Sorbonne University Chair, Paris, France.,Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI USA.,Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
15
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Son M, Park C, Rampogu S, Zeb A, Lee KW. Discovery of Novel Acetylcholinesterase Inhibitors as Potential Candidates for the Treatment of Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20041000. [PMID: 30823604 PMCID: PMC6412560 DOI: 10.3390/ijms20041000] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Acetylcholinesterase (AChE) catalyzes the hydrolysis of neurotransmitter acetylcholine to acetate and choline in a synaptic cleft. Deficits in cholinergic neurotransmitters are linked closely with the progression of Alzheimer’s disease (AD), which is a neurodegenerative disorder characterized by memory impairment, and a disordered cognitive function. Since the previously approved AChE inhibitors, donepezil (Aricept), galantamine (Reminyl), and rivastigmine (Exelon), have side effects and several studies are being carried out out to develop novel AD drugs, we have applied a three-dimensional quantitative structure−activity relationship (3D QSAR) and structure-based pharmacophore modeling methodologies to identify potential candidate inhibitors against AChE. Herein, 3D QSAR and structure-based pharmacophore models were built from known inhibitors and crystal structures of human AChE in complex with donepezil, galantamine, huperzine A, and huprine W, respectively. The generated models were used as 3D queries to screen new scaffolds from various chemical databases. The hit compounds obtained from the virtual screening were subjected to an assessment of drug-like properties, followed by molecular docking. The final hit compounds were selected based on binding modes and molecular interactions in the active site of the enzyme. Furthermore, molecular dynamics simulations for AChE in complex with the final hits were performed to evaluate that they maintained stable interactions with the active site residues. The binding free energies of the final hits were also calculated using molecular mechanics/Poisson-Boltzmann surface area method. Taken together, we proposed that these hits can be promising candidates for anti-AD drugs.
Collapse
Affiliation(s)
- Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Chanin Park
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Amir Zeb
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
17
|
Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain. Front Aging Neurosci 2019; 11:1. [PMID: 30740048 PMCID: PMC6357927 DOI: 10.3389/fnagi.2019.00001] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA.
Collapse
Affiliation(s)
- Roxana Aldea
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Giles Richardson
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
18
|
González-Naranjo P, Pérez-Macias N, Pérez C, Roca C, Vaca G, Girón R, Sánchez-Robles E, Martín-Fontelles MI, de Ceballos ML, Martin-Requero A, Campillo NE, Páez JA. Indazolylketones as new multitarget cannabinoid drugs. Eur J Med Chem 2019; 166:90-107. [PMID: 30685536 DOI: 10.1016/j.ejmech.2019.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 02/02/2023]
Abstract
Multitarget cannabinoids could be a promising therapeutic strategic to fight against Alzheimer's disease. In this sense, our group has developed a new family of indazolylketones with multitarget profile including cannabinoids, cholinesterase and BACE-1 activity. A medicinal chemistry program that includes computational design, synthesis and in vitro and cellular evaluation has allowed to us to achieve lead compounds. In this work, the synthesis and evaluation of a new class of indazolylketones have been performed. Pharmacological evaluation includes functional activity for cannabinoid receptors on isolated tissue. In addition, in vitro inhibitory assays in AChE/BuChE enzymes and BACE-1 have been carried out. Furthermore, studies of neuroprotective effects in human neuroblastoma SH-SY5Y cells and studies of the mechanisms of survival/death in lymphoblasts of patients with Alzheimer's disease have been achieved. The results of pharmacological tests have revealed that some of these derivatives (5, 6) behave as CB2 cannabinoid agonists and simultaneously show BuChE and/or BACE-1 inhibition.
Collapse
Affiliation(s)
| | | | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Carlos Roca
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maéztu 9, 28040, Madrid, Spain
| | - Gabriela Vaca
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maéztu 9, 28040, Madrid, Spain
| | - Rocio Girón
- Área de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Avda. Atenas s/n, 28922, Alcorcón, Grupo de investigación i+DOL URJC-Santander Universidades, Spain
| | - Eva Sánchez-Robles
- Área de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Avda. Atenas s/n, 28922, Alcorcón, Grupo de investigación i+DOL URJC-Santander Universidades, Spain
| | - María Isabel Martín-Fontelles
- Área de Farmacología y Nutrición, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, Avda. Atenas s/n, 28922, Alcorcón, Grupo de investigación i+DOL URJC-Santander Universidades, Spain
| | | | | | - Nuria E Campillo
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maéztu 9, 28040, Madrid, Spain
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
19
|
Vitale RM, Rispoli V, Desiderio D, Sgammato R, Thellung S, Canale C, Vassalli M, Carbone M, Ciavatta ML, Mollo E, Felicità V, Arcone R, Gavagnin Capoggiani M, Masullo M, Florio T, Amodeo P. In Silico Identification and Experimental Validation of Novel Anti-Alzheimer's Multitargeted Ligands from a Marine Source Featuring a "2-Aminoimidazole plus Aromatic Group" Scaffold. ACS Chem Neurosci 2018; 9:1290-1303. [PMID: 29473731 DOI: 10.1021/acschemneuro.7b00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multitargeting or polypharmacological approaches, looking for single chemical entities retaining the ability to bind two or more molecular targets, are a potentially powerful strategy to fight complex, multifactorial pathologies. Unfortunately, the search for multiligand agents is challenging because only a small subset of molecules contained in molecular databases are bioactive and even fewer are active on a preselected set of multiple targets. However, collections of natural compounds feature a significantly higher fraction of bioactive molecules than synthetic ones. In this view, we searched our library of 1175 natural compounds from marine sources for molecules including a 2-aminoimidazole+aromatic group motif, found in known compounds active on single relevant targets for Alzheimer's disease (AD). This identified two molecules, a pseudozoanthoxanthin (1) and a bromo-pyrrole alkaloid (2), which were predicted by a computational approach to possess interesting multitarget profiles on AD target proteins. Biochemical assays experimentally confirmed their biological activities. The two compounds inhibit acetylcholinesterase, butyrylcholinesterase, and β-secretase enzymes in high- to sub-micromolar range. They are also able to prevent and revert β-amyloid (Aβ) aggregation of both Aβ1-40 and Aβ1-42 peptides, with 1 being more active than 2. Preliminary in vivo studies suggest that compound 1 is able to restore cholinergic cortico-hippocampal functional connectivity.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
| | - Vincenzo Rispoli
- Department of Health Sciences, University Magna Græcia of Catanzaro, Building of Biosciences, University Campus “Salvatore Venuta”, Viale Europa, I-88100 Catanzaro (CZ), Italy
| | - Doriana Desiderio
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, Via Medina 40, I-80133 Naples (NA), Italy
| | - Roberta Sgammato
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, Via Medina 40, I-80133 Naples (NA), Italy
| | - Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 2, I-16132 Genoa (GE), Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, I-16146 Genoa (GE), Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council, Via De Marini, 10, I-16149 Genoa (GE), Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
| | - Maria Letizia Ciavatta
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
| | - Ernesto Mollo
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
| | - Vera Felicità
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
- Department of Health Sciences, University Magna Græcia of Catanzaro, Building of Biosciences, University Campus “Salvatore Venuta”, Viale Europa, I-88100 Catanzaro (CZ), Italy
| | - Rosaria Arcone
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, Via Medina 40, I-80133 Naples (NA), Italy
- CEINGE - Advanced Biotechnologies s.c.a r.l., Via Gaetano Salvatore, 486, I-80145 Naples (NA), Italy
| | - Margherita Gavagnin Capoggiani
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
| | - Mariorosario Masullo
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, Via Medina 40, I-80133 Naples (NA), Italy
- CEINGE - Advanced Biotechnologies s.c.a r.l., Via Gaetano Salvatore, 486, I-80145 Naples (NA), Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 2, I-16132 Genoa (GE), Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Comprensorio Olivetti, Ed.70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy
| |
Collapse
|
20
|
Marent B, Wieczorek CC, Krajic K. Professionals' perspectives towards health promotion in residential aged care: an explorative study in Austria. Health Promot Int 2018; 33:268-278. [PMID: 27694212 DOI: 10.1093/heapro/daw075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following the trend in most developed countries, in Austria the oldest old are the fastest growing population group. Among this group, there is a high prevalence of multimorbidity, functional impairment, dementia and psychiatric conditions. While health promotion (HP) has been considered relevant in coping with the challenges of an aging population, it has so far been viewed as a foreign concept in relation to the oldest old, especially those living in residential aged care (RAC) facilities. Although there is an acknowledgement that HP should be integrated into routine nursing, there has been little research on how professionals working with RAC interpret and implement HP. In this study, 13 semi-structured interviews were carried out with professionals from four major Austrian RAC providers. The data were analysed using thematic analysis. The findings show that, typically, professionals understand HP as a concept that is oriented towards maintaining potentials and resources, thereby promoting self-determination, autonomy and social integration, including frail and functionally impaired elderly residents. However, data analysis also revealed a gap between the conceptual understanding and positive attitudes towards HP and its implementation in practice. Implementation of HP seems to occur in isolated cases, related to specific health issues. It seems that more complex HP approaches, especially the 'settings approach', are hardly practiced. To implement more comprehensive and systematic HP in Austrian RAC, support from external HP agencies as well as changes in financial incentives are needed.
Collapse
Affiliation(s)
- Benjamin Marent
- School of Applied Social Science, University of Brighton, Mayfield House, Falmer, Brighton, UK.,formerly: Ludwig Boltzmann Institute Health Promotion Research, Ludwig Boltzmann Gesellschaft, Untere Donaustraße 47, Vienna, Austria
| | - Christina C Wieczorek
- formerly: Ludwig Boltzmann Institute Health Promotion Research, Ludwig Boltzmann Gesellschaft, Untere Donaustraße 47, Vienna, Austria.,WHO-CC for Health Promotion in Hospitals and Health Care at Gesundheit Österreich GmbH, Stubenring 6, Vienna, Austria
| | - Karl Krajic
- formerly: Ludwig Boltzmann Institute Health Promotion Research, Ludwig Boltzmann Gesellschaft, Untere Donaustraße 47, Vienna, Austria.,Institute of Sociology, University of Vienna, Rooseveltplatz 2, Vienna, Austria.,FORBA Working Life Research Centre, Aspernbrückengasse 4/5, Vienna, Austria
| |
Collapse
|
21
|
Huang CW, Hsu SW, Chang YT, Huang SH, Huang YC, Lee CC, Chang WN, Lui CC, Chen NC, Chang CC. Cerebral Perfusion Insufficiency and Relationships with Cognitive Deficits in Alzheimer's Disease: A Multiparametric Neuroimaging Study. Sci Rep 2018; 8:1541. [PMID: 29367598 PMCID: PMC5784155 DOI: 10.1038/s41598-018-19387-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022] Open
Abstract
Micro- or macro-circulatory insufficiency has a negative impact in patients with Alzheimer’s disease (AD). This study used arterial spin-labeled magnetic resonance imaging (ASL-MRI) and ethylcysteinate dimer single-photon emission computed tomography (ECD-SPECT) in 50 patients with AD and 30 age-matched controls to investigate how hypoperfusion patterns were associated with gray matter atrophy and clinical data. All participants completed 3DT1-MRI, ECD-SPECT and ASL-MRI examinations. Medial temporal cortex (MTC) volumes were correlated with regional signals showing significantly lower relative cerebral blood flow (rCBF) in ASL-MRI or perfusion index (PI) in ECD-SPECT. Neurobehavioral scores served as the outcome measures. Regions with lower PI showed spatial similarities with atrophy in the medial, anterior and superior temporal lobes, posterior cingulate cortex and angular gyrus, while regions showing lower rCBF were localized to the distal branches of posterior cerebral artery territories (posterior parietal and inferior temporal lobe) and watershed areas (angular gyrus, precuneus, posterior cingulate gyrus and middle frontal cortex). rCBF values in watershed areas correlated with MTC volumes and language composite scores. Precuneus and angular gyrus hypoperfusion were associated with the corresponding cortical atrophy. Macro- or micro-vasculature perfusion integrities and cortical atrophy determined the overall perfusion imaging topography and contributed differently to the clinical outcomes.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Cheng Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Chung Lui
- Department of Radiology, Division of medical imaging, E-Da Cancer Hospital and I-Shou University, Kaohsiung, Taiwan
| | - Na-Ching Chen
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Abstract
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor. Despite upregulation of VEGF in the brain in Alzheimer's disease (AD), probably in response to amyloid-β, vasoconstriction, and tissue hypoxia, there is no consequent increase in microvessel density. VEGF binds to and activates VEGF receptor 2 (VEGFR2), but also binds to VEGF receptor 1 (VEGFR1), which exists in less-active membrane-bound and inactive soluble (sVEGFR1) forms and inhibits pro-angiogenic signaling. We have investigated whether altered expression of VEGF receptors might account for the lack of angiogenic response to VEGF in AD. We assessed the cellular distribution and protein level of VEGFR1 and VEGFR2 in parietal cortex from 50 AD and 36 age-matched control brains, and related the findings to measurements of VEGF and von Willebrand factor level (a marker of microvessel density) in the same tissue samples. VEGFR2 was expressed by neurons, astrocytes and endothelial cells. VEGFR1 was expressed predominantly neuronally and was significantly reduced in AD (p = 0.02). Western blot analysis on a subset of brains showed reduction in VEGFR1:sVEGFR1 in AD (p = 0.046). The lack of angiogenesis despite cerebral hypoperfusion in AD is not explained by altered expression of VEGFR2 or total VEGFR1; indeed, the downregulation of VEGFR1 may represent a pro-angiogenic response to the hypoperfusion. However, the relative increase in sVEGFR1 would be expected to have an anti-angiogenic effect which may be a factor in AD.
Collapse
Affiliation(s)
- Rachel Harris
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| | - James Scott Miners
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| | - Shelley Allen
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| | - Seth Love
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| |
Collapse
|
23
|
Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes. Brain Imaging Behav 2017; 10:437-44. [PMID: 26063438 PMCID: PMC4908163 DOI: 10.1007/s11682-015-9395-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew.
Collapse
|
24
|
Love S, Miners J. Cerebral Hypoperfusion and the Energy Deficit in Alzheimer's Disease. Brain Pathol 2016; 26:607-17. [PMID: 27327656 PMCID: PMC8028913 DOI: 10.1111/bpa.12401] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
There is a perfusion deficit in Alzheimer's disease (AD), commencing in the precuneus and spreading to other parts of the cerebral cortex. The deficit anticipates the development of dementia, contributes to brain damage, and is caused by both functional and structural abnormalities of the cerebral vasculature. Most of the abnormalities are probably secondary to the accumulation of Aβ but the consequent hypoperfusion may, in turn, increase Aβ production. In the early stages of disease, abnormalities that cause vasoconstriction predominate. These include cholinergic vascular denervation, inhibition of endothelial nitric oxide synthase, increased production of endothelin-1 production and possibly also of angiotensin II. Patients with AD also have an increased prevalence of structural disease of cerebral microvessels, particularly CAA and capillary damage, and particularly in the later stages of disease these are likely to make an important contribution to the cerebral hypoperfusion. The metabolic abnormalities that cause early vascular dysfunction offer several targets for therapeutic intervention. However, for intervention to be effective it probably needs to be early. Prolonged cerebral hypoperfusion may induce compensatory circulatory changes that are themselves damaging, including hypertension and small vessel disease. This has implications for the use of antihypertensive drugs once there is accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| | - J.Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| |
Collapse
|
25
|
Di Marco LY, Farkas E, Martin C, Venneri A, Frangi AF. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease? J Alzheimers Dis 2016; 46:35-53. [PMID: 25720414 PMCID: PMC4878307 DOI: 10.3233/jad-142976] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chris Martin
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK.,IRCCS, Fondazione Ospedale S. Camillo, Venice, Italy
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
27
|
Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Mol Neurobiol 2015; 53:4833-64. [PMID: 26351077 DOI: 10.1007/s12035-015-9390-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/11/2015] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive functions. AD can be classified into familial AD (FAD) and sporadic AD (SAD) based on heritability and into early onset AD (EOAD) and late onset AD (LOAD) based on age of onset. LOAD cases are more prevalent with genetically complex architecture. In spite of significant research focused on understanding the etiological mechanisms, search for diagnostic biomarker(s) and disease-modifying therapy is still on. In this article, we aim to comprehensively review AD literature on established etiological mechanisms including role of beta-amyloid and apolipoprotein E (APOE) along with promising newer etiological factors such as epigenetic modifications that have been associated with AD suggesting its multifactorial nature. As genomic studies have recently played a significant role in elucidating AD pathophysiology, a systematic review of findings from genome-wide linkage (GWL), genome-wide association (GWA), genome-wide expression (GWE), and epigenome-wide association studies (EWAS) was conducted. The availability of multi-dimensional genomic data has further coincided with the advent of computational and network biology approaches in recent years. Our review highlights the importance of integrative approaches involving genomics and systems biology perspective in elucidating AD pathophysiology. The promising newer approaches may provide reliable means of early and more specific diagnosis and help identify therapeutic interventions for LOAD.
Collapse
Affiliation(s)
- Puneet Talwar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Juhi Sinha
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Sandeep Grover
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Chitra Rawat
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Suman Kushwaha
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India. .,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.
| |
Collapse
|
28
|
González-Naranjo P, Pérez-Macias N, Campillo NE, Pérez C, Arán VJ, Girón R, Sánchez-Robles E, Martín MI, Gómez-Cañas M, García-Arencibia M, Fernández-Ruiz J, Páez JA. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer's disease. Eur J Med Chem 2014; 73:56-72. [DOI: 10.1016/j.ejmech.2013.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/08/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
|
29
|
|
30
|
Glodzik L, Randall C, Rusinek H, de Leon MJ. Cerebrovascular reactivity to carbon dioxide in Alzheimer's disease. J Alzheimers Dis 2013; 35:427-40. [PMID: 23478306 DOI: 10.3233/jad-122011] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is growing evidence that cerebrovascular reactivity to carbon dioxide (CVRCO2) is impaired in Alzheimer's disease (AD). Preclinical and animal studies suggest chronic hypercontractility in brain vessels in AD. We review (a) preclinical studies of mechanisms for impaired CVRCO2 in AD; (b) clinical studies of cerebrovascular function in subjects with AD dementia, mild cognitive impairment (MCI), and normal cognition. Although results of clinical studies are inconclusive, an increasing number of reports reveal an impairment of vascular reactivity to carbon dioxide in subjects with AD, and possibly also in MCI. Thus, CVRCO2 may be an attractive means to detect an early vascular dysfunction in subjects at risk.
Collapse
Affiliation(s)
- Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
31
|
Soria-Fregozo C, Flores-Soto M, Pérez-Vega M, Feria-Velasco A. 5-HT denervation of the adult rat prefrontal cortex induces changes in the expression of α4 and α7 nicotinic acetylcholine receptor subtypes. NEUROLOGÍA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.nrleng.2012.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Abstract
Alzheimer’s disease (AD), considered the commonest neurodegenerative cause of dementia, is associated with hallmark pathologies including extracellular amyloid-β protein (Aβ) deposition in extracellular senile plaques and vessels, and intraneuronal tau deposition as neurofibrillary tangles. Although AD is usually categorized as neurodegeneration distinct from cerebrovascular disease (CVD), studies have shown strong links between AD and CVD. There is evidence that vascular risk factors and CVD may accelerate Aβ 40-42 production/ aggregation/deposition and contribute to the pathology and symptomatology of AD. Aβ deposited along vessels also causes cerebral amyloid angiopathy. Amyloid imaging allows in vivo detection of AD pathology, opening the way for prevention and early treatment, if disease-modifying therapies in the pipeline show safety and efficacy. In this review, we review the role of vascular factors and Aβ, underlining that vascular risk factor management may be important for AD prevention and treatment.
Collapse
|
33
|
Biomarkers in Alzheimer's disease with a special emphasis on event-related oscillatory responses. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:237-73. [DOI: 10.1016/b978-0-7020-5307-8.00020-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Chaudhary S, Scouten A, Schwindt G, Janik R, Lee W, Sled JG, Black SE, Stefanovic B. Hemodynamic effects of cholinesterase inhibition in mild Alzheimer's disease. J Magn Reson Imaging 2012; 38:26-35. [PMID: 23239554 DOI: 10.1002/jmri.23967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/25/2012] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the spatiotemporal progression of perfusion changes in early stages of Alzheimer's disease (AD), we imaged the perfusion response to pharmacological treatment in a group of mild AD patients and contrasted it to the perfusion of age-, sex-, and education-matched healthy volunteers over the same time interval. MATERIALS AND METHODS We used pseudo continuous arterial spin labeling (PCASL) MRI for quantitative three-dimensional mapping of perfusion immediately before and 6 months after cholinesterase inhibitor treatment. RESULTS Before treatment, patients were found hypoperfused relative to their healthy counterparts in the gray matter of lateral temporal lobe, posterior cingulate, and anterior cingulate as well as in the white matter of the posterior cingulate. Most of the cortical regions investigated and the white matter of posterior cingulate and prefrontal regions showed treatment-elicited increases in perfusion, which were not secondary to changes in regional tissue volume nor were they associated with improvement in either MMSE or ADAS-Cog scores, although lack of deterioration suggested a cognitive benefit. CONCLUSION This study provides a hemodynamic profile of mild AD and sheds light on the perfusion changes related to prolonged cholinesterase inhibition in this early disease stage.
Collapse
|
35
|
Başar E, Güntekin B. A short review of alpha activity in cognitive processes and in cognitive impairment. Int J Psychophysiol 2012; 86:25-38. [PMID: 22801250 DOI: 10.1016/j.ijpsycho.2012.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
AIM OF THE REPORT: In the companion report (Başar, this volume), the physiological fundaments of alpha activity in integrative brain function are described. The present report is a review of the significant role of alpha activity in memory and cognitive processes in healthy subjects, and in cognitive impairment. The role of neurotransmitters is also described, briefly, in this context. TOWARDS AN UNDERSTANDING OF BRAIN ALPHA: Despite numerous experimental studies, it is indicated that the presented results are only appropriate to establish an ensemble of reasonings and suggestions for analyzing "alphas" in the whole brain. In turn, in the near future, these reasonings and suggestions may serve (or are indispensable to serve) as fundaments of more general and tenable hypotheses on the genesis and function of "alphas".
Collapse
Affiliation(s)
- Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey.
| | | |
Collapse
|
36
|
Soria-Fregozo C, Flores-Soto ME, Pérez-Vega MI, Feria-Velasco A. 5-HT denervation of the adult rat prefrontal cortex induces changes in the expression of α4 and α7 nicotinic acetylcholine receptor subtypes. Neurologia 2012; 28:212-8. [PMID: 22703630 DOI: 10.1016/j.nrl.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022] Open
Abstract
INTRODUCTION Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout several brain regions. Formation of the α4β2 and α7 subtypes in particular is involved in the organisation of different types of memory. Furthermore, due to their location, these receptors can control the release of various types of neurotransmitters and contribute to synaptic plasticity. METHODS Rats were divided into three groups, an experimental group (E), a sham-operated group, (S) and an intact group (T). In group E, stereotactic guidance was used to induce a chemical lesion with 1 μ/μL of 5,7-dihydroxytryptamine (5,7-DHT) in the anteroventral part of the dorsal raphe nucleus (DRN). In the sham-operated group (S), animals underwent surgery including delivery of the same excipient solution to the same site. The intact group (T) received no treatment whatsoever. Twenty days after surgery, animals in all groups were euthanised by decapitation to evaluate the expression of α4 and α7 nAChRs by means of molecular biology techniques. RESULTS 5-HT denervation of the rat PFC differentially modified the expression of α4 and α7 receptors: while α4 receptor expression increased, α7 expression decreased. CONCLUSION Expression differences observed between the two subtypes may be due to their separate locations. The α4 subtype is found in postsynaptic locations and may be related to adaptive changes in postsynaptic cells, while the location of α7 is presynaptic. This explains why the lesion and the elimination of 5-HT fibres in the CPF would cause a decrease in α7 expression.
Collapse
Affiliation(s)
- C Soria-Fregozo
- Laboratorio de Psicobiología y Biología Molecular, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara. Lagos de Moreno, Jalisco, México.
| | | | | | | |
Collapse
|
37
|
Babiloni C, Frisoni GB, Vecchio F, Lizio R, Pievani M, Cristina G, Fracassi C, Vernieri F, Rodriguez G, Nobili F, Ferri R, Rossini PM. Stability of clinical condition in mild cognitive impairment is related to cortical sources of alpha rhythms: an electroencephalographic study. Hum Brain Mapp 2011; 32:1916-31. [PMID: 21181798 PMCID: PMC6869969 DOI: 10.1002/hbm.21157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/10/2010] [Accepted: 08/10/2010] [Indexed: 11/10/2022] Open
Abstract
Previous evidence has shown that resting eyes-closed cortical alpha rhythms are higher in amplitude in mild cognitive impairment (MCI) than Alzheimer's disease (AD) subjects (Babiloni et al. [2006a]: Human Brain Mapp 27:162-172; [2006b]: Clin Neurophysiol 117:252-268; [2006c]: Neuroimage 29:948-964; [2006d]: Ann Neurol 59:323-334; [2006e]: Clin Neurophysiol 117:1113-1129; [2006f]: Neuroimage 31:1650-1665). This study tested the hypothesis that, in amnesic MCI subjects, high amplitude of baseline cortical alpha rhythms is related to long-term stability of global cognition on clinical follow-up. Resting electroencephalographic (EEG) data were recorded in 100 amnesic MCI subjects during eyes-closed condition. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Cortical EEG sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Global cognition was indexed by mini mental state evaluation (MMSE) score at the time of EEG recordings (baseline) and about after 1 year. Based on the MMSE percentage difference between baseline and 1-year follow-up (MMSEvar), the MCI subjects were retrospectively divided into three arbitrary groups: DECREASED (MMSEvar ≤ -4%; N = 43), STABLE (MMSEvar ≈ 0; N = 27), and INCREASED (MMSEvar ≥ +4%; N = 30). Subjects' age, education, individual alpha frequency, gender, and MMSE scores were used as covariates for statistical analysis. Baseline posterior cortical sources of alpha 1 rhythms were higher in amplitude in the STABLE than in the DECREASED and INCREASED groups. These results suggest that preserved resting cortical neural synchronization at alpha frequency is related to a long-term (1 year) stable cognitive function in MCI subjects. Future studies should use serial MMSE measurements to confirm and refine the present results.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res 2011; 221:594-603. [DOI: 10.1016/j.bbr.2010.05.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/19/2010] [Indexed: 01/19/2023]
|
39
|
Impaired cerebral vasoreactivity to CO2 in Alzheimer's disease using BOLD fMRI. Neuroimage 2011; 58:579-87. [PMID: 21745581 DOI: 10.1016/j.neuroimage.2011.06.070] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/13/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To evaluate the cerebral vasoreactivity using blood oxygenation level dependent functional MRI during carbogen inhalation with 7% CO(2) in Alzheimer's disease and amnestic mild cognitive impairment. PARTICIPANTS AND METHODS Thirty nine subjects were included to be investigated using blood oxygenation level dependent (BOLD) functional MRI at 1.5T during a block-design carbogen inhalation paradigm, with a high concentration face-mask under physiological monitoring. Basal cerebral perfusion was measured using pulsed arterial spin labeling. Image analyses were conducted using Matlab® and SPM5 with physiological regressors and corrected for partial volume effect. RESULTS Among selected participants, 12 subjects were excluded because of incomplete protocol, leaving for analysis 27 subjects without significant microangiopathy diagnosed for Alzheimer's disease (n=9), amnestic mild cognitive impairment (n=7), and matched controls (n=11). No adverse reaction related to the CO(2) challenge was reported. Carbogen inhalation induced a whole-brain signal increase, predominant in the gray matter. In patients, signal changes corrected for gray matter partial volume were decreased (0.36±0.13% BOLD/mmHg in Alzheimer's disease, 0.36±0.12 in patients with mild cognitive impairment, 0.62±0.20 in controls). Cerebral vasoreactivity impairments were diffuse but seemed predominant in posterior areas. The basal hypoperfusion in Alzheimer's disease was not significantly different from patients with mild cognitive impairment and controls. Among clinical and biological parameters, no effect of apoE4 genotype was detected. Cerebral vasoreactivity values were correlated with cognitive performances and hippocampal volumes. Among age and hippocampal atrophy, mean CVR was the best predictor of the mini-mental status examination. CONCLUSION This BOLD functional MRI study on CO(2) challenge shows impaired cerebral vasoreactivity in patients with Alzheimer's disease and amnestic mild cognitive impairment at the individual level. These preliminary findings using a new MRI approach may help to better characterize patients with cognitive disorders in clinical practice and further investigate vaso-protective therapeutics.
Collapse
|
40
|
Abstract
Cerebral autoregulation aims to stabilize blood flow to the brain during variations in perfusion pressure, thus protecting the brain against the risks of low or high systemic blood pressure. This vital mechanism is severely impaired in the transgenic mouse model of Alzheimer's disease (AD) that abundantly produces amyloid-β peptide β(1-42). These observations have been extrapolated to human AD, wherein impairment of autoregulation could have important implications for the clinical management and prevention of AD. Research on cerebral autoregulation in human AD, however, has only recently become available. Contrary to the animal models, preliminary studies suggest that cerebral autoregulation is preserved in patients with AD. Further research is urgently needed to elucidate this discrepancy in the current literature, given the accumulating evidence that implicates cerebrovascular pathology in AD.
Collapse
|
41
|
Lin KP, Chen SY, Lai LC, Huang YL, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chen WJ, Chen YC. Genetic polymorphisms of a novel vascular susceptibility gene, Ninjurin2 (NINJ2), are associated with a decreased risk of Alzheimer's disease. PLoS One 2011; 6:e20573. [PMID: 21674003 PMCID: PMC3108950 DOI: 10.1371/journal.pone.0020573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/04/2011] [Indexed: 11/30/2022] Open
Abstract
Background Accumulated evidences have shown that vascular risk factors, e.g., hypertension, diabetes mellitus and hyperlipidemia, may be related to the risk of dementia. This study investigated the association between genetic polymorphisms of a vascular susceptibility gene, Ninjurin2 (NINJ2), and the risk of dementia, which has not been explored previously. Methods A total of 275 Alzheimer's disease (AD) patients and 119 vascular dementia (VaD) patients aged 50 or older were recruited from three teaching hospitals from 2007 to 2010. Healthy controls (n = 423) with the same age of cases were recruited from the health checkup and volunteers worked at the hospital during the same time period. Five common (frequency >5%) haplotype-tagging single nucleotide polymorphisms (htSNPs) in NINJ2 were genotyped to test for the association between sequence variants of NINJ2 and dementia risk, and how vascular risk factors modify this association. Results Homozygosity of two NINJ2 SNPs was significantly associated with a decreased risk of AD [rs11833579: adjusted odds ratio (AOR) = 0.43; 95% confidence interval (CI) = 0.23–0.80; rs12425791: AOR = 0.33, 95% CI = 0.12–0.96]. Five common haplotypes (cumulative frequency = 97%) were identified. The global test for the association between NINJ2 haplotypes and AD was significant (p = 0.03). Haplotype CAGGA was significantly associated with a decreased risk of AD (AOR = 0.32, 95% CI = 0.11–0.94). No associations were observed for VaD. Conclusion Inherited polymorphisms of the vascular susceptibility gene NINJ2 were associated with AD risk.
Collapse
Affiliation(s)
- Kun-Pei Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Yuan Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jen-Hau Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, Taipei, Taiwan
| | - Li-Li Wen
- Department of Laboratory Medicine, En Chu Kong Hospital, Taipei, Taiwan
| | - Ping-Keung Yip
- Center of Neurological Medicine, Cardinal Tien's Hospital, Taipei, Taiwan
| | - Yi-Min Chu
- Department of Laboratory Medicine, Cardinal Tien's Hospital, Taipei, Taiwan
| | - Wei J. Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environment, and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environment, and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Abstract
The ability of the brain to locally augment glucose delivery and blood flow during neuronal activation, termed neurometabolic and neurovascular coupling, respectively, is compromised in Alzheimer's disease (AD). Since perfusion deficits may hasten clinical deterioration and have been correlated with negative treatment outcome, strategies to improve the cerebral circulation should form an integral element of AD therapeutic efforts. These efforts have yielded several experimental models, some of which constitute AD models proper, others which specifically recapture the AD cerebrovascular pathology, characterized by anatomical alterations in brain vessel structure, as well as molecular changes within vascular smooth muscle cells and endothelial cells forming the blood-brain barrier. The following paper will present the elements of AD neurovascular dysfunction and review the in vitro and in vivo model systems that have served to deepen our understanding of it. It will also critically evaluate selected groups of compounds, the FDA-approved cholinesterase inhibitors and thiazolidinediones, for their ability to correct neurovascular dysfunction in AD patients and models. These and several others are emerging as compounds with pleiotropic actions that may positively impact dysfunctional cerebrovascular, glial, and neuronal networks in AD.
Collapse
|
43
|
Lizio R, Vecchio F, Frisoni GB, Ferri R, Rodriguez G, Babiloni C. Electroencephalographic rhythms in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:927573. [PMID: 21629714 PMCID: PMC3100729 DOI: 10.4061/2011/927573] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/13/2011] [Indexed: 11/20/2022] Open
Abstract
Physiological brain aging is characterized by synapses loss and neurodegeneration that slowly lead to an age-related decline of cognition. Neural/synaptic redundancy and plastic remodelling of brain networking, also due to mental and physical training, promotes maintenance of brain activity in healthy elderly subjects for everyday life and good social behaviour and intellectual capabilities. However, age is the major risk factor for most common neurodegenerative disorders that impact on cognition, like Alzheimer's disease (AD). Brain electromagnetic activity is a feature of neuronal network function in various brain regions. Modern neurophysiological techniques, such as electroencephalography (EEG) and event-related potentials (ERPs), are useful tools in the investigation of brain cognitive function in normal and pathological aging with an excellent time resolution. These techniques can index normal and abnormal brain aging analysis of corticocortical connectivity and neuronal synchronization of rhythmic oscillations at various frequencies. The present review suggests that discrimination between physiological and pathological brain aging clearly emerges at the group level, with suggested applications also at the level of single individual. The possibility of combining the use of EEG together with biological/neuropsychological markers and structural/functional imaging is promising for a low-cost, non-invasive, and widely available assessment of groups of individuals at-risk.
Collapse
|
44
|
Tosun D, Mojabi P, Weiner MW, Schuff N. Joint analysis of structural and perfusion MRI for cognitive assessment and classification of Alzheimer's disease and normal aging. Neuroimage 2010; 52:186-97. [PMID: 20406691 DOI: 10.1016/j.neuroimage.2010.04.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/16/2022] Open
Abstract
Structural magnetic resonance imaging (MRI) of brain tissue loss and physiological imaging of regional cerebral blood flow (rCBF) can provide complimentary information for the characterization of brain disorders, such as Alzheimer's disease (AD) but studies into gains in classification power for AD using these image modalities jointly have been limited. Our aim in this study was to determine the joint contribution of structural and perfusion-weighted imaging for the classification of AD in a cross-sectional study using an integrated multimodality MRI processing framework and a cortical surface-based analysis approach. We used logistic regression analysis to determine sequentially the value of cortical thickness, rCBF, and cortical thickness and rCBF jointly for classification for diagnosis of AD compared to controls. We further tested the extent to which cortical thinning and reduced rCBF explain individually or together variability in dementia severity. Separate analysis of structural MRI and perfusion-weighted MRI data yielded the well-established pattern of cortical thinning and rCBF reduction in AD, affecting predominantly temporo-parietal brain regions. Using structural MRI and perfusion-weighted MRI jointly indicated that cortical thinning dominated the classification of AD and controls without significant contributions from rCBF. However there was also a positive interaction between reduced rCBF and cortical thinning in the right superior temporal sulcus, implying that structural and physiological brain alterations in AD can be complementary. Compared to reduced rCBF, regional cortical thinning better explained the variability in dementia severity. In conclusion, structural brain alterations compared to physiological variations are the dominant features of MRI in AD.
Collapse
Affiliation(s)
- Duygu Tosun
- Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
45
|
Van Beek AHEA, Claassen JAHR. The cerebrovascular role of the cholinergic neural system in Alzheimer's disease. Behav Brain Res 2010; 221:537-42. [PMID: 20060023 DOI: 10.1016/j.bbr.2009.12.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/26/2009] [Indexed: 10/20/2022]
Abstract
The intrinsic cholinergic innervation of the cortical microvessels contains both subcortical pathways and local cortical interneurons mediated by muscarinic and nicotinic acetylcholine receptors. Stimulation of this system leads to vasodilatation. In the extrinsic innervation, choline acts as a selective agonist for the α7-nicoticinic acetylcholine receptor on the sympathetic nerves to cause vasodilatation, and through this mechanism, cholinergic modulation may affect this sympathetic vasodilatation. Alzheimer's disease is characterized by a cerebral cholinergic deficit and cerebral blood flow is diminished. Cholinesterase inhibitors, important drugs in the treatment of Alzheimer's disease, could influence the cerebral blood flow through stimulation of the intrinsic cholinergic cerebrovascular innervation. Indeed, cholinesterase inhibitors improve cerebral blood flow in Alzheimer patients who respond to treatment. Further, cerebrovascular reactivity and neurovascular coupling are impaired in Alzheimer's disease and both can be improved by cholinesterase inhibitors. Conversely, cholinesterase inhibitors inhibit the α7-nicoticinic acetylcholine receptor on extrinsic sympathetic nerves and thus may impair vasodilatation. The net outcome of these opposing effects in clinical practice remains unknown. Moreover, it is uncertain whether the regulation of cerebral blood flow during blood pressure changes (cerebral autoregulation) is impaired in patients with Alzheimer's disease. Technological developments now allow us to dynamically measure blood pressure, cerebral blood flow, and cerebral cortical oxygenation. Using simple maneuvers like single sit-stand and repeated sit-stand maneuvers, the regulation of cerebral perfusion in patients with Alzheimer's disease can easily be measured. Sit-stand maneuvers can be considered as a provocation test for cerebral autoregulation, and provide excellent opportunities to study the cerebrovascular effects of cholinesterase inhibitors.
Collapse
Affiliation(s)
- Arenda H E A Van Beek
- Radboud University Nijmegen Medical Centre, Department of Geriatric Medicine and Alzheimer Centre Nijmegen, The Netherlands
| | | |
Collapse
|
46
|
Claassen JAHR, Diaz-Arrastia R, Martin-Cook K, Levine BD, Zhang R. Altered cerebral hemodynamics in early Alzheimer disease: a pilot study using transcranial Doppler. J Alzheimers Dis 2009; 17:621-9. [PMID: 19433892 DOI: 10.3233/jad-2009-1079] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebrovascular disease may contribute to the development and progression of Alzheimer's disease (AD). This study investigated whether impairments in cerebral hemodynamics can be detected in early-stage AD. Nine patients with mild AD and eight cognitively normal controls matched for age underwent brain magnetic resonance imaging and neuropsychological evaluation, followed by assessment of steady-state cerebral blood flow velocity (CBFV, transcranial Doppler), blood pressure (BP, Finapres), and cerebrovascular resistance index (BP/CBFV). Cerebral hemodynamics were quantified using spectral and transfer function analysis of BP and CBFV in rest, during standing up after squat, and during repeated squat-stand maneuvers. Compared to controls, AD patients had lower CBFV and higher cerebrovascular resistance index, unexplained by brain atrophy. Low-frequency variability of BP was enhanced, suggesting impaired arterial baroreflex function. However, CBFV variability was reduced despite enhanced BP variability, and dynamic cerebral autoregulation was not impaired. In conclusion, despite a distinct pattern of altered cerebral hemodynamics, AD patients may have normal autoregulation. However, the challenges for autoregulation in AD are higher, as our data show enhanced BP fluctuations. Increased cerebral vasoconstriction or reduced vasomotion also may attenuate CBFV variability.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Babiloni C, Pievani M, Vecchio F, Geroldi C, Eusebi F, Fracassi C, Fletcher E, De Carli C, Boccardi M, Rossini PM, Frisoni GB. White-matter lesions along the cholinergic tracts are related to cortical sources of EEG rhythms in amnesic mild cognitive impairment. Hum Brain Mapp 2009; 30:1431-43. [PMID: 19097164 DOI: 10.1002/hbm.20612] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Does impairment of cholinergic systems represent an important factor in the development of amnesic mild cognitive impairment (aMCI), as a preclinical stage of Alzheimer's disease (AD)? Here we tested the hypothesis that electroencephalographic (EEG) rhythms, known to be modulated by the cholinergic system, may be particularly affected in aMCI patients with lesions along the cholinergic white-matter tracts. Eyes-closed resting EEG data were recorded in 28 healthy elderly (Nold) and 57 aMCI patients. Lesions along the cholinergic white-matter tracts were detected with fluid-attenuated inversion recovery sequences on magnetic resonance imaging. The estimation of the cholinergic lesion was performed with a validated semi-automatic algorithm pipeline after registration to a stereotactic template, image integration with stereotactic masks of the cholinergic tracts, and normalization to intracranial volume. The aMCI patients were divided into two groups of high (MCI Ch+; N = 29; MMSE = 26.2) and low cholinergic damage (MCI Ch-; N = 28; MMSE = 26.6). EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). Cortical EEG generators were estimated by LORETA software. As main results, (i) power of occipital, parietal, temporal, and limbic alpha 1 sources was maximum in Nold, intermediate in MCI Ch-, and low in MCI Ch+ patients; (ii) the same trend was true in theta sources. These results are consistent with the hypothesis that damage to the cholinergic system is associated with alterations of EEG sources in aMCI subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Claassen JAHR, van Beek AHEA, Olde Rikkert MGM. Short review: Acetylcholinesterase-inhibitors in Alzheimer's disease have opposing effects on blood pressure and cerebral perfusion. J Nutr Health Aging 2009; 13:231-3. [PMID: 19262959 DOI: 10.1007/s12603-009-0064-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- J A H R Claassen
- Department of Geriatric Medicine, Radboud University Nijmegen Medical Center, Netherlands.
| | | | | |
Collapse
|
49
|
Babiloni C, Frisoni GB, Pievani M, Vecchio F, Infarinato F, Geroldi C, Salinari S, Ferri R, Fracassi C, Eusebi F, Rossini PM. White matter vascular lesions are related to parietal-to-frontal coupling of EEG rhythms in mild cognitive impairment. Hum Brain Mapp 2009; 29:1355-67. [PMID: 17979121 DOI: 10.1002/hbm.20467] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Do cerebrovascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI) as a putative preclinical stage of AD? Here we tested the hypothesis that directionality of fronto-parietal functional coupling of electroencephalographic (EEG) rhythms is relatively preserved in amnesic MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold) and 78 amnesic MCI. In the MCI subjects, white-matter vascular load was quantified based on magnetic resonance images (0-30 visual rating scale). EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Directionality of fronto-parietal functional coupling of EEG rhythms was estimated by directed transfer function software. As main results, (i) fronto-parietal functional coupling of EEG rhythms was higher in magnitude in the Nold than in the MCI subjects; (ii) more interestingly, that coupling was higher at theta, alpha1, alpha2, and beta1 in MCI V+ (high vascular load; N = 42; MMSE = 26) than in MCI V- group (low vascular load; N = 36; MMSE= 26.7). These results are interpreted as supporting the additive model according to which MCI state would result from the combination of cerebrovascular and neurodegenerative lesions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abbatecola AM, Barbieri M, Rizzo MR, Grella R, Laieta MT, Quaranta E, Molinari AM, Cioffi M, Fioretto P, Paolisso G. Arterial stiffness and cognition in elderly persons with impaired glucose tolerance and microalbuminuria. J Gerontol A Biol Sci Med Sci 2008; 63:991-6. [PMID: 18840806 DOI: 10.1093/gerona/63.9.991] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cognitive decline that occurs frequently in impaired glucose tolerance (IGT) may be largely due to endothelial dysfunction. We assessed: (i) the relationships between impact of urinary albumin excretion rate (UAER), as marker of generalized endothelial dysfunction, and cognition; (ii) if cognitive decline could be explained by arterial stiffening using pulse wave velocity (PWV). METHODS One hundred forty older patients (age range 70-85 years) with IGT and no dementia were selected. Patients were classified according to 24-hour UAER: normoalbuminuric (NA) (UAER<20 microg/min) or microalbuminuric (MA) (UAER between 20 and 199 microg/min). Cognitive abilities were assessed by the Mini-Mental State Examination (MMSE) and a composite score of executive and attention functioning (CCS) at baseline and after 12 months of follow-up. RESULTS In MA patients (n=80), increased UAERs correlated with intimal media thickness (IMT) (r=0.268; p=02) and PWV (r=0.310; p=004). In the same group, increased UAERs were correlated with MMSE and CCS even after adjusting for age and mean arterial blood pressure (MABP). After adding PWV, the associations among UAERs, MMSE, and CCS were no longer significant. In MA patients, PWV correlated with IMT, MMSE, and CCS. In NA patients, no significant correlations were found among UAERs, MMSE, and CCS. At follow-up, baseline UAERs predicted an approximately 20% risk of poor cognition (according to MMSE and CCS) after adjusting for confounders. After adding PWV, UAERs no longer predicted cognitive performance. CONCLUSIONS MA older persons with IGT showed a decline in cognition performance that may be partially explained by arterial stiffness.
Collapse
Affiliation(s)
- Angela M Abbatecola
- Department of Geriatric Medicine and Metabolic Diseases, Second University of Naples, Italy, Piazza Miraglia 2, I-80138 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|