1
|
Todorovic S, Simeunovic V, Prvulovic M, Dakic T, Jevdjovic T, Sokanovic S, Kanazir S, Mladenovic A. Dietary restriction alters insulin signaling pathway in the brain. Biofactors 2024; 50:450-466. [PMID: 37975613 DOI: 10.1002/biof.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
Insulin is known to be a key hormone in the regulation of peripheral glucose homeostasis, but beyond that, its effects on the brain are now undisputed. Impairments in insulin signaling in the brain, including changes in insulin levels, are thought to contribute significantly to declines in cognitive performance, especially during aging. As one of the most widely studied experimental interventions, dietary restriction (DR) is considered to delay the neurodegenerative processes associated with aging. Recently, however, data began to suggest that the onset and duration of a restrictive diet play a critical role in the putative beneficial outcome. Because the effects of DR on insulin signaling in the brain have been poorly studied, we decided to examine the effects of DR that differed in onset and duration: long-term DR (LTDR), medium-term DR (MTDR), and short-term DR (STDR) on the expression of proteins involved in insulin signaling in the hippocampus of 18- and 24-month-old male Wistar rats. We found that DR-induced changes in insulin levels in the brain may be independent of what happens in the periphery after restricted feeding. Significantly changed insulin content in the hippocampus, together with altered insulin signaling were found under the influence of DR, but the outcome was highly dependent on the onset and duration of DR.
Collapse
Affiliation(s)
- Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Selma Kanazir
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Sohrabi M, Floden AM, Manocha GD, Klug MG, Combs CK. IGF-1R Inhibitor Ameliorates Neuroinflammation in an Alzheimer's Disease Transgenic Mouse Model. Front Cell Neurosci 2020; 14:200. [PMID: 32719587 PMCID: PMC7348663 DOI: 10.3389/fncel.2020.00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). Insulin-like growth factor-1 receptor (IGF-1R) regulates general aging and lifespan. However, the contribution of IGF-1 to age-related AD pathology and progression is highly controversial. Based on our previous work, AβPP/PS1 double transgenic mice, which express human mutant amyloid precursor protein (APP) and presenilin-1 (PS-1), demonstrated a decrease in brain IGF-1 levels when they were crossed with IGF-1 deficient Ames dwarf mice (df/df). Subsequently, a reduction in gliosis, amyloid-β (Aβ) plaque deposition, and Aβ1-40/42 concentrations were observed in this mouse model. This supported the hypothesis that IGF-1 may contribute to the progression of the disease. To assess the role of IGF-1 in AD, 9-10-month-old male littermate control wild type and AβPP/PS1 mice were randomly divided into two treatment groups including control vehicle (DMSO) and picropodophyllin (PPP), a selective, competitive, and reversible IGF-1R inhibitor. The brain penetrant inhibitor was given ip. at 1 mg/kg/day. Mice were sacrificed after 7 days of daily injection and the brains, spleens, and livers were collected to quantify histologic and biochemical changes. The PPP-treated AβPP/PS1 mice demonstrated attenuated insoluble Aβ1-40/42. Additionally, an attenuation in microgliosis and protein p-tyrosine levels was observed due to drug treatment in the hippocampus. Our data suggest IGF-1R signaling is associated with disease progression in this mouse model. More importantly, modulation of the brain IGF-1R signaling pathway, even at mid-life, was enough to attenuate aspects of the disease phenotype. This suggests that small molecule therapy targeting the IGF-1R pathway may be viable for late-stage disease treatment.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Angela M Floden
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Gunjan D Manocha
- Department of Geriatrics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Marilyn G Klug
- Department of Population Health, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
3
|
Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY) 2016; 7:956-63. [PMID: 26568155 PMCID: PMC4694065 DOI: 10.18632/aging.100841] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reduced insulin/insulin-like growth factor 1 (IGF-1) signaling has been associated with longevity in various model organisms. However, the role of insulin/IGF-1 signaling in human survival remains controversial. The aim of this study was to test whether circulating IGF-1 axis parameters associate with old age survival and functional status in nonagenarians from the Leiden Longevity Study. This study examined 858 Dutch nonagenarian (males≥89 years; females≥91 years) siblings from 409 families, without selection on health or demographic characteristics. Nonagenarians were divided over sex-specific strata according to their levels of IGF-1, IGF binding protein 3 and IGF-1/IGFBP3 molar ratio. We found that lower IGF-1/IGFBP3 ratios were associated with improved survival: nonagenarians in the quartile of the lowest ratio had a lower estimated hazard ratio (95% confidence interval) of 0.73 (0.59 – 0.91) compared to the quartile with the highest ratio (ptrend=0.002). Functional status was assessed by (Instrumental) Activities of Daily Living ((I)ADL) scales. Compared to those in the quartile with the highest IGF-1/IGFBP3 ratio, nonagenarians in the lowest quartile had higher scores for ADL (ptrend=0.001) and IADL (ptrend=0.003). These findings suggest that IGF-1 axis parameters are associated with increased old age survival and better functional status in nonagenarians from the Leiden Longevity Study.
Collapse
|
4
|
Tumati S, Burger H, Martens S, van der Schouw YT, Aleman A. Association between Cognition and Serum Insulin-Like Growth Factor-1 in Middle-Aged & Older Men: An 8 Year Follow-Up Study. PLoS One 2016; 11:e0154450. [PMID: 27115487 PMCID: PMC4846160 DOI: 10.1371/journal.pone.0154450] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/13/2016] [Indexed: 11/29/2022] Open
Abstract
Low levels of insulin-like growth factor-1 (IGF-1), an essential neurotrophic factor, have been associated with worse cognitive function in older adults. However, few studies have assessed the prospective association of serum IGF-1 with cognitive function. We aimed to determine the association between serum IGF-1 on concurrent and prospective cognitive function in a population sample of men aged 40–80 years. Blood samples were assessed for IGF-1 levels at baseline and neuropsychological assessments were performed at baseline (n = 400) and at follow-up after a mean duration of 8.3 years (n = 286). Linear regression analyses were carried out to determine the associations between quintiles of IGF-1 and cognitive function at the baseline and follow-up visits. Results showed that those in the top quintile of IGF-1 had lower processing capacity and global cognition scores at follow-up after controlling for cognitive function at baseline and other confounding factors. Additional analyses exploring associations with IGF-1 separately in middle-aged and older participants, and with quartiles of IGF-1 produced similar results. In those older than 60 years, high IGF-1 levels were also associated with lower baseline processing capacity. These results suggest that high IGF-1 levels are associated with worse long-term cognition in men. Together with past studies, we suggest that both, high and low levels of IGF-1 may be associated with poor cognitive function and that optimum levels of IGF-1 (quintile 2 and 3 in current study) may be associated with better cognitive function.
Collapse
Affiliation(s)
- Shankar Tumati
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
- * E-mail:
| | - Huibert Burger
- Department of General Practice, University Medical Center Groningen, Groningen, The Netherlands
- Interdisciplinary Center for Psychopathology and Emotion Regulation, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander Martens
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
5
|
Insulin-like growth factor-1 and risk of late-onset Alzheimer's disease: findings from a family study. Neurobiol Aging 2013; 35:725.e7-10. [PMID: 24054991 DOI: 10.1016/j.neurobiolaging.2013.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 12/28/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), part of an evolutionary conserved signaling pathway in both mammalian and non-mammalian species, is inferred in neurodegenerative disorders including Alzheimer's disease (AD). A murine model for AD shows that reduced IGF-1 signaling prevents AD-like characteristics. However, variation in serum levels of IGF-1 and risk of AD in humans has yet to be determined. We used a proven family design, comparing middle-aged offspring with and without a parental history of AD. The offspring under study carry an increased risk of AD but do not yet experience cognitive impairment. A total of 206 offspring from 92 families with a parental history of AD were compared with 200 offspring from 97 families without a parental history of AD. Apolipoprotein-E (APOE) genotypes and serum IGF-1 levels were compared in subjects with and without a parental history of AD using linear regression, adjusted for APOE genotype and other possible demographic and clinical confounders. Offspring with a parental history of AD were more likely to be an APOE ε4 allele carrier (46.5% vs. 21%, p = 0.001) than were offspring without such a parental history. Offspring with a parental history of AD had higher IGF-1 levels than subjects without such a history, in both unadjusted and adjusted analyses (18.3 mmol/L vs. 16.7 mmol/L, p = 0.001). In conclusion, higher serum IGF-1 levels in middle age are associated with risk of AD disease in older age, independent of APOE genotype.
Collapse
|
6
|
Gonzalez-Covarrubias V. Lipidomics in longevity and healthy aging. Biogerontology 2013; 14:663-72. [PMID: 23948799 DOI: 10.1007/s10522-013-9450-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
The role of classical lipids in aging diseases and human longevity has been widely acknowledged. Triglyceride and cholesterol concentrations are clinically assessed to infer the risk of cardiovascular disease while larger lipoprotein particle size and low triglyceride levels have been identified as markers of human longevity. The rise of lipidomics as a branch of metabolomics has provided an additional layer of accuracy to pinpoint specific lipids and its association with aging diseases and longevity. The molecular composition and concentration of lipid species determine their cellular localization, metabolism, and consequently, their impact in disease and health. For example, low density lipoproteins are the main carriers of sphingomyelins and ceramides, while high density lipoproteins are mostly loaded with ether phosphocholines, partly explaining their opposing roles in atherogenesis. Moreover, the identification of specific lipid species in aging diseases and longevity would aid to clarify how these lipids alter health and influence longevity. For instance, ether phosphocholines PC (O-34:1) and PC (O-34:3) have been positively associated with longevity and negatively with diabetes, and hypertension, but other species of phosphocholines show no effect or an opposite association with these traits confirming the relevance of the identification of molecular lipid species to tackle our understanding of healthy aging and disease. Up-to-date, a minor fraction of the human plasma lipidome has been associated to healthy aging and longevity, further research would pinpoint toward specific lipidomic profiles as potential markers of healthy aging and metabolic diseases.
Collapse
|
7
|
List EO, Berryman DE, Wright-Piekarski J, Jara A, Funk K, Kopchick JJ. The effects of weight cycling on lifespan in male C57BL/6J mice. Int J Obes (Lond) 2012; 37:1088-94. [PMID: 23229739 PMCID: PMC3609933 DOI: 10.1038/ijo.2012.203] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 10/02/2012] [Accepted: 11/09/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE With the increasing rates of obesity, many people diet in an attempt to lose weight. As weight loss is seldom maintained in a single effort, weight cycling is a common occurrence. Unfortunately, reports from clinical studies that have attempted to determine the effect of weight cycling on mortality are in disagreement, and to date, no controlled animal study has been performed to assess the impact of weight cycling on longevity. Therefore, our objective was to determine whether weight cycling altered lifespan in mice that experienced repeated weight gain and weight loss throughout their lives. METHODS Male C57BL/6J mice were placed on one of three lifelong diets: a low-fat (LF) diet, a high-fat (HF) diet or a cycled diet in which the mice alternated between 4 weeks on the LF diet and 4 weeks on the HF diet. Body weight, body composition, several blood parameters and lifespan were assessed. RESULTS Cycling between the HF and LF diet resulted in large fluctuations in body weight and fat mass. These gains and losses corresponded to significant increases and decreases, respectively, in leptin, resistin, GIP, IGF-1, glucose, insulin and glucose tolerance. Surprisingly, weight cycled mice had no significant difference in lifespan (801±45 days) as compared to LF-fed controls (828±74 days), despite being overweight and eating a HF diet for half of their lives. In contrast, the HF-fed group experienced a significant decrease in lifespan (544±73 days) compared with LF-fed controls and cycled mice. CONCLUSIONS This is the first controlled mouse study to demonstrate the effect of lifelong weight cycling on longevity. The act of repeatedly gaining and losing weight, in itself, did not decrease lifespan and was more beneficial than remaining obese.
Collapse
Affiliation(s)
- E O List
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University, Athens, OH 45701, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Barbieri M, Rizzo MR, Papa M, Boccardi V, Esposito A, White MF, Paolisso G. The IRS2 Gly1057Asp variant is associated with human longevity. J Gerontol A Biol Sci Med Sci 2009; 65:282-6. [PMID: 19887537 DOI: 10.1093/gerona/glp154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Reduced insulin and insulin-like growth factor-1 (IGF-1) signaling extends the life span of invertebrate and mammals. Recently, reduced insulin receptor substrate-2 (IRS2) signaling was found associated with increased longevity in mice. The aim of our study was to evaluate whether a common polymorphism (Gly1057Asp) in human IRS2 gene is associated with human longevity. METHODS Six hundred seventy-seven participants (289 males and 388 females) between 16 and 104 years of age, categorized as long lived (LL; >85 years old) or controls (C; <85 years old), were genotyped for Gly1057Asp-IRS2 locus variability (rs1805097). All participants, contacted at home or in their institution or selected from Italian geriatric and internal medicine or geriatric rehabilitation structures, underwent to a clinical, biochemical, and functional characterization, with particular attention to the insulin and IGF-1 signaling. Insulin resistance (Homeostasis Model Assessment [HOMA]-IR), insulin sensitivity (HOMA IS), and ss-cell function (HOMA-B cell) were calculated by the HOMA2 calculator v2.2 (www.dtu.ox.ac.uk/homa). RESULTS In the whole population, homozygous IRS2(Asp/Asp) participants were more represented among LL versus C participants (16.7% vs 12.0%; p = .04). The association between IRS2 gene polymorphism with longevity (being LL) was independent of anthropometric and metabolic covariates (odds ratio: 2.07, 95% confidence interval [CI] = 1.38-3.12; p = .001). Categorizing participants into percentiles by age, IRS2(Asp/Asp) participants were more likely to reach extreme old age (>or=90 percentile, 96-104 years; odds ratio: 2.03, 95% CI = 1.39-2.99; p = .0003). CONCLUSIONS These results support the hypothesis that the IRS2 branch of the insulin and IGF signaling is associated with human longevity. Further studies will be necessary for replicating our finding in an independent larger population group with sufficient power before the association between IRS2 gene polymorphism and longevity can be regarded as proven. Furthermore, studies of genetic and/or environmental background interactions may be useful after basic replication is complete.
Collapse
Affiliation(s)
- Michelangela Barbieri
- Department of Geriatric Medicine and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|