1
|
Bautista CJ, Reyes-Castro LA, Lomas-Soria C, Ibáñez CA, Zambrano E. Late-in-life Exercise Ameliorates the Aging Trajectory Metabolism Programmed by Maternal Obesity in Rats: It is Never Too Late. Arch Med Res 2024; 55:103002. [PMID: 38735235 DOI: 10.1016/j.arcmed.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Maternal obesity (MO) has been shown to adversely affect metabolic, oxidative, reproductive, and cognitive function in offspring. However, it is unclear whether lifestyle modification can ameliorate the metabolic and organ dysfunction programmed by MO and prevent the effects of metabolic syndrome in adulthood. This study aimed to evaluate whether moderate voluntary exercise in the offspring of rats born to obese mothers can ameliorate the adverse effects of MO programming on metabolism and liver function in mid-adulthood. METHODS Offspring of control (CF1) and MOF1 mothers were fed with a control diet from weaning. Adult males and females participated in 15 min exercise sessions five days/week. Metabolic parameters were analyzed before and after the exercise intervention. Liver oxidative stress biomarkers and antioxidant enzymes were analyzed before and after the intervention. RESULTS Males showed that CF1ex ran more than MOF1ex and increased the distance covered. In contrast, females in both groups ran similar distances and remained constant but ran more distance than males. At PND 300 and 450, male and female MOF1 had higher leptin, triglycerides, insulin, and HOMA-IR levels than CF1. However, male MOF1ex had lower triglycerides, insulin, and HOMA-IR levels than MOF1. Improvements in liver fat and antioxidant enzymes were observed in CF1ex and MOF1ex males and females compared to their respective CF1 and MOF1 groups. CONCLUSION These findings suggest that moderate voluntary exercise, even when started in mid-adulthood, can improve metabolic outcomes and delay accelerated metabolic aging in MO-programmed rats in a sex-dependent manner.
Collapse
Affiliation(s)
- Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Consejo Nacional de Humanidades, Ciencias y Tecnologías, Cátedras Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Carlos A Ibáñez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Belisario Domínguez, Tlalpan, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Reynolds LP, Dahlen CR, Ward AK, Crouse MS, Borowicz PP, Davila-Ruiz BJ, Kanjanaruch C, Bochantin KA, McLean KJ, McCarthy KL, Menezes ACB, Diniz WJS, Cushman RA, Caton JS. Role of the placenta in developmental programming: Observations from models using large animals. Anim Reprod Sci 2023; 257:107322. [PMID: 37696224 PMCID: PMC10591737 DOI: 10.1016/j.anireprosci.2023.107322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Developmental programming, which proposes that "insults" or "stressors" during intrauterine or postnatal development can have not only immediate but also long-term consequences for healthy and productivity, has emerged as a major biological principle, and based on studies in many animal species also seems to be a universal phenomenon. In eutherians, the placenta appears to be programmed during its development, which has consequences for fetal growth and development throughout pregnancy, and likewise has long-term consequences for postnatal development, leading to programming of organ function of the offspring even into adulthood. This review summarizes our current understanding of the placenta's role in developmental programming, the mechanisms involved, and the challenges remaining.
Collapse
Affiliation(s)
- L P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - C R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - A K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - M S Crouse
- Nutrition, Growth, and Physiology Research Unit, USDA/Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - P P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - B J Davila-Ruiz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - C Kanjanaruch
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - K A Bochantin
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - K J McLean
- Department of Animal Science, University of Tennessee Knoxville, Knoxville, TN 37996-4500, USA
| | - K L McCarthy
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE 68583-0908, USA
| | - A C B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA
| | - W J S Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36832, USA
| | - R A Cushman
- Nutrition, Growth, and Physiology Research Unit, USDA/Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - J S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
3
|
Lomas-Soria C, Rodríguez-González GL, Ibáñez CA, Reyes-Castro LA, Nathanielsz PW, Zambrano E. Maternal Obesity Programs the Premature Aging of Rat Offspring Liver Mitochondrial Electron Transport Chain Genes in a Sex-Dependent Manner. BIOLOGY 2023; 12:1166. [PMID: 37759566 PMCID: PMC10526092 DOI: 10.3390/biology12091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
We investigated whether maternal obesity affects the hepatic mitochondrial electron transport chain (ETC), sirtuins, and antioxidant enzymes in young (110 postnatal days (PND)) and old (650PND) male and female offspring in a sex- and age-related manner. Female Wistar rats ate a control (C) or high-fat (MO) diet from weaning, through pregnancy and lactation. After weaning, the offspring ate the C diet and were euthanized at 110 and 650PND. The livers were collected for RNA-seq and immunohistochemistry. Male offspring livers had more differentially expressed genes (DEGs) down-regulated by both MO and natural aging than females. C-650PND vs. C-110PND and MO-110PND vs. C-110PND comparisons revealed 1477 DEGs in common for males (premature aging by MO) and 35 DEGs for females. Analysis to identify KEGG pathways enriched from genes in common showed changes in 511 and 3 KEGG pathways in the male and female livers, respectively. Mitochondrial function pathways showed ETC-related gene down-regulation. All ETC complexes, sirtuin2, sirtuin3, sod-1, and catalase, exhibited gene down-regulation and decreased protein expression at young and old ages in MO males vs. C males; meanwhile, MO females down-regulated only at 650PND. Conclusions: MO accelerates the age-associated down-regulation of ETC pathway gene expression in male offspring livers, thereby causing sex-dependent oxidative stress, premature aging, and metabolic dysfunction.
Collapse
Affiliation(s)
- Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
- CONAHCyT-Cátedras, Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Carlos A. Ibáñez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Reynolds LP, Diniz WJS, Crouse MS, Caton JS, Dahlen CR, Borowicz PP, Ward AK. Maternal nutrition and developmental programming of offspring. Reprod Fertil Dev 2022; 35:19-26. [PMID: 36592977 DOI: 10.1071/rd22234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental programming is the concept that 'stressors' during development (i.e. pregnancy, the perinatal period and infancy) can cause long-term changes in gene expression, leading to altered organ structure and function. Such long-term changes are associated with an increased risk of a host of chronic pathologies, or non-communicable diseases including abnormal growth and body composition, behavioural or cognitive dysfunction, metabolic abnormalities, and cardiovascular, gastro-intestinal, immune, musculoskeletal and reproductive dysfunction. Maternal nutrition during the periconceptual period, pregnancy and postnatally can have profound influences on the developmental program. Animal models, including domestic livestock species, have been important for defining the mechanisms and consequences of developmental programming. One of the important observations is that maternal nutritional status and other maternal stressors (e.g. environmental temperature, high altitude, maternal age and breed, multiple fetuses, etc.) early in pregnancy and even periconceptually can affect not only embryonic/fetal development but also placental development. Indeed, altered placental function may underlie the effects of many maternal stressors on fetal growth and development. We suggest that future directions should focus on the consequences of developmental programming during the offspring's life course and for subsequent generations. Other important future directions include evaluating interventions, such as strategic dietary supplementation, and also determining how we can take advantage of the positive, adaptive aspects of developmental programming.
Collapse
Affiliation(s)
- Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | - Matthew S Crouse
- Nutrition, Growth, and Physiology Research Unit, USDA/Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Joel S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Alison K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
5
|
High-fat diet consumption by male rat offspring of obese mothers exacerbates adipose tissue hypertrophy and metabolic alterations in adult life. Br J Nutr 2022:1-10. [PMID: 36412162 DOI: 10.1017/s0007114522003737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Obese mothers' offspring develop obesity and metabolic alterations in adulthood. Poor postnatal dietary patterns also contribute to obesity and its comorbidities. We aimed to determine whether in obese mothers' offspring an adverse postnatal environment, such as high-fat diet (HFD) consumption (second hit) exacerbates body fat accumulation, metabolic alterations and adipocyte size distribution. Female Wistar rats ate chow (C-5 %-fat) or HFD (maternal obesity (MO)-25 %-fat) from weaning until the end of lactation. Male offspring were weaned on either control (C/C and MO/C, maternal diet/offspring diet) or HFD (C/HF and MO/HF) diet. At 110 postnatal days, offspring were killed. Fat depots were excised to estimate adiposity index (AI). Serum glucose, triglyceride, leptin, insulin, insulin resistance index (HOMA-IR), corticosterone and dehydroepiandrosterone (DHEA) were determined. Adipocyte size distribution was evaluated in retroperitoneal fat. Body weight was similar in C/C and MO/C but higher in C/HF and MO/HF. AI, leptin, insulin and HOMA-IR were higher in MO/C and C/HF v. C/C but lower than MO/HF. Glucose increased in MO/HF v. MO/C. C/HF and MO/C had higher triglyceride and corticosterone than C/C, but lower corticosterone than MO/HF. DHEA and the DHEA/corticosterone ratio were lower in C/HF and MO/C v. C/C, but higher than MO/HF. Small adipocyte proportion decreased while large adipocyte proportions increased in MO/C and C/HF v. C/C and exacerbated in MO/HF v. C/HF. Postnatal consumption of a HFD by the offspring of obese mothers exacerbates body fat accumulation as well as the decrease of small and the increase of large adipocytes, which leads to larger metabolic abnormalities.
Collapse
|
6
|
Chavira-Suárez E, Reyes-Castro LA, López-Tenorio II, Vargas-Hernández L, Rodríguez-González GL, Chavira R, Zárate-Segura P, Domínguez-López A, Vadillo-Ortega F, Zambrano E. Sex-differential RXRα gene methylation effects on mRNA and protein expression in umbilical cord of the offspring rat exposed to maternal obesity. Front Cell Dev Biol 2022; 10:892315. [PMID: 36072345 PMCID: PMC9442673 DOI: 10.3389/fcell.2022.892315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal obesity (MO) induces negative consequences in the offspring development. Adiposity phenotype is associated with maternal diet at early pregnancy and DNA methylation marks in the RXRα promotor at birth. Glucocorticoids play an important role in the regulation of metabolism through the activation of nuclear hormone receptors such as the RXRα protein. The aim of the study was to analyze steroid hormone changes at the end of pregnancy in the obese mother and RXRα gene methylation in the umbilical cord. For this purpose, in a well-established MO model, female Wistar rats were fed either standard chow (controls: C) or high-fat obesogenic diet (MO) before and during pregnancy to evaluate at 19 days of gestation (19 dG): 1) maternal concentration of circulating steroid hormones in MO and C groups, 2) maternal and fetal weights, 3) analysis of correlation between hormones concentration and maternal and fetal weights, 4) DNA methylation status of a single locus of RXRα gene near the early growth response (EGR-1) protein DNA binding site, and 5) RXRα mRNA and protein expressions in umbilical cords. Our results demonstrate that at 19 dG, MO body weight before and during pregnancy was higher than C; MO progesterone and corticosterone serum concentrations were higher and estradiol lower than C. There were not differences in fetal weight between male and female per group, therefore averaged data was used; MO fetal weight was lower than C. Positive correlations were found between progesterone and corticosterone with maternal weight, and estradiol with fetal weight, while negative correlation was observed between corticosterone and fetal weight. Additionally, male umbilical cords from MO were hypermethylated in RXRα gene compared to male C group, without differences in the female groups; mRNA and protein expression of RXRα were decreased in F1 male but not in female MO compared to C. In conclusion, MO results in dysregulation of circulating steroid hormones of the obese mothers and low fetal weight in the F1, modifying DNA methylation of RXRα gene as well as RXRα mRNA and protein expression in the umbilical cord in a sex-dependent manner.
Collapse
Affiliation(s)
- Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Itzel Ivonn López-Tenorio
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - Lilia Vargas-Hernández
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
- Instituto Mexicano del Seguro Social, Hospital de Ginecología y Obstetricia No. 4 Luis Castelazo Ayala, Mexico City, México
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Paola Zárate-Segura
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | | | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- *Correspondence: Elena Zambrano,
| |
Collapse
|
7
|
Zambrano E, Lomas-Soria C, Nathanielsz PW. Rodent studies of developmental programming and ageing mechanisms: Special issue: In utero and early life programming of ageing and disease. Eur J Clin Invest 2021; 51:e13631. [PMID: 34061987 DOI: 10.1111/eci.13631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/31/2022]
Abstract
Compelling evidence exists indicating that developmental programming influences ageing. Programming alters life-course phenotype in multiple organs, predisposing to diseases such as diabetes, obesity and cardiovascular disease that shorten lifespan. This review describes studies in rodents, the most commonly studied species, addressing interactions of programming challenges with ageing. We first consider ageing and programming of insulin function that has been clearly shown to decrease with age. It is important to evaluate ageing in pancreatic islets isolated from other systems. Studies discussed show premature pancreatic islet ageing resulting from both maternal under- and overnutrition. New ways to determine programming of adipose tissue and effects on fat storage are explored. Oxidative stress is a major factor that regulates ageing in tissues. Oxidative stress is discussed in relation to reproductive and cardiovascular ageing. Premature ageing is associated with both low and high glucocorticoid function. Both over and undernutrition have offspring sex-specific programming effects on life-course glucocorticoid concentrations. Evidence is provided that maternal age at conception affects offspring endocrine and metabolism ageing. Finally, the importance of matching foetal nutrition and energy availability with composition and energy content in the post-weaning diet is demonstrated. This mismatch can lead to a greatly shortened lifespan. General principles are discussed throughout. For example, sexual dimorphism of age-related outcomes can be marked. Accelerated ageing occurs early in life. Improving knowledge on programming ageing interactions will improve health span as well as lifespan. Finally, there are considerable similarities in outcomes programmed by maternal undernutrition and overnutrition.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Consuelo Lomas-Soria
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.,Reproductive Biology Department, CONACyT-Cátedras, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, México
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-course Health Center, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
8
|
Lomas-Soria C, Cox LA, Nathanielsz PW, Zambrano E. Sexual dimorphism in liver cell cycle and senescence signalling pathways in young and old rats. J Physiol 2021; 599:4309-4320. [PMID: 34387378 DOI: 10.1113/jp281822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
At the molecular level, cellular ageing involves changes in multiple gene pathways. Cellular senescence is both an important initiator and a consequence of natural ageing. Senescence results in changes in multiple cellular mechanisms that result in a natural decrease in cell cycle activity. Liver senescence changes impair hepatic function. Given the well-established sexual dimorphism in ageing, we hypothesized that the natural hepatic ageing process is driven by sex-dependent gene mechanisms. We studied our well-characterized normal, chow-fed rat ageing model, lifespan ∼850 days, in which we have reported ageing of metabolism, reproduction and endocrine function. We performed liver RNA-seq on males and females at 110 and 650 days to determine changes in the cell cycle and cellular senescence signalling pathways. We found that natural liver ageing shows sexual dimorphism in these pathways. RNA-seq revealed more male (3967) than female (283) differentially expressed genes between 110 and 650 days. Cell cycle pathway signalling changes in males showed decreased protein and expression of key genes (Cdk2, Cdk4, Cycd and PCNA) and increased expression ofp57 at 650 vs 110 days. In females, protein and gene expression of cell growth regulators, e.g. p15 and p21, which inhibit cell cycle G1 progression, were increased. The cell senescence pathway also showed sexual dimorphism. Igfbp3, mTOR and p62 gene and protein expression decreased in males while those ofTgfb3 increased in females. Understanding the involvement of cell cycling and cellular senescence pathways in natural ageing will advance evaluation of mechanisms associated with altered ageing and frailty trajectories. KEY POINTS: In rats RNA-seq analysis showed sexual dimorphism in gene expression across the life-course between 110 and 650 days of life. Fourteen times more liver transcriptome and six times more pathway changes were observed in males compared with females. Significant changes were observed in several signalling pathways during ageing. Bioinformatic analysis were focused on changes in genes and protein products related to cell cycle and cellular senescence pathways. Males showed decreased protein product and expression of the key genes Cdk2 and Cdk4 responsible for cell cycle progression while females increased protein product and expression of p21 and p15, key genes responsible for cell cycle arrest. In conclusion, normative rat hepatic ageing involves changes in cellular pathways that control cell cycle arrest but through changes in different genes in males and females. These findings identify mechanisms that underlie the well-established sexual dimorphism in ageing.
Collapse
Affiliation(s)
- Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, Mexico, 14080, Mexico.,CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, Mexico, 14080, Mexico
| | - Laura A Cox
- Department of Internal Medicine, Section on Molecular Medicine, Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, Mexico, 14080, Mexico
| |
Collapse
|