1
|
Fuentealba M, Kiprov D, Schneider K, Mu WC, Kumaar PA, Kasler H, Burton JB, Watson M, Halaweh H, King CD, Yüksel ZS, Roska-Pamaong C, Schilling B, Verdin E, Furman D. Multi-Omics Analysis Reveals Biomarkers That Contribute to Biological Age Rejuvenation in Response to Single-Blinded Randomized Placebo-Controlled Therapeutic Plasma Exchange. Aging Cell 2025:e70103. [PMID: 40424097 DOI: 10.1111/acel.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
We conducted a randomized, placebo-controlled trial to assess the safety and biological age (BA) effects of various therapeutic plasma exchange (TPE) regimens in healthy adults over 50. Participants received bi-weekly TPE with or without intravenous immunoglobulin (IVIG), monthly TPE, or placebo. Randomization was based on entry date, and treatments were blinded to maintain objectivity. Primary objectives were to assess long-term TPE safety and changes in biological clocks. Secondary goals included identifying optimal regimens. Exploratory analyses profiled baseline clinical features and longitudinal changes across the epigenome, proteome, metabolome, glycome, immune cytokines, iAge, and immune cell composition. We demonstrate in 42 individuals randomized to various treatment arms or placebo that long-term TPE was found to be safe, with only two adverse events requiring discontinuation and one related to IVIG. TPE significantly improved biological age markers, with 15 epigenetic clocks showing rejuvenation compared to placebo (FDR < 0.05). Biweekly TPE combined with intravenous immunoglobulin (TPE-IVIG) proved most effective, inducing coordinated cellular and molecular responses, reversing age-related immune decline, and modulating proteins linked to chronic inflammation. Integrative analysis identified baseline biomarkers predictive of positive outcomes, suggesting TPE-IVIG is particularly beneficial for individuals with poorer initial health status. This is the first multi-omics study to examine various TPE modalities to slow epigenetic biologic clocks, which demonstrate biological age rejuvenation and the molecular features associated with this rejuvenation. Trial Registration: Registered trial NCT06534450 on clinicaltrials.gov under the purview of the Diagnostic Investigational Review Board.
Collapse
Affiliation(s)
| | - Dobri Kiprov
- Buck Institute for Research on Aging, Novato, California, USA
- Global Apheresis Inc., Mill Valley, California, USA
- Circulate, Seattle, Washington, USA
| | - Kevin Schneider
- Buck Institute for Research on Aging, Novato, California, USA
| | - Wei-Chieh Mu
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Herbert Kasler
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | - Mark Watson
- Buck Institute for Research on Aging, Novato, California, USA
| | - Heather Halaweh
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
2
|
Drewelies J, Homann J, Vetter VM, Düzel S, Kühn S, Deecke L, Steinhagen-Thiessen E, Jawinski P, Markett S, Lindenberger U, Lill CM, Bertram L, Demuth I, Gerstorf D. There Are Multiple Clocks That Time Us: Cross-Sectional and Longitudinal Associations Among 14 Alternative Indicators of Age and Aging. J Gerontol A Biol Sci Med Sci 2025; 80:glae244. [PMID: 39383103 DOI: 10.1093/gerona/glae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 10/11/2024] Open
Abstract
Aging is a complex process influenced by mechanisms operating at numerous levels of functioning. Multiple biomarkers of age have been identified, yet we know little about how the different alternative age indicators are intertwined. In the Berlin Aging Study II (nmin = 328; nmax = 1 517, women = 51%; 14.27 years of education), we examined how levels and 7-year changes in indicators derived from blood assays, magnetic resonance imaging brain scans, other-ratings, and self-reports converge among older adults. We included 8 epigenetic biomarkers (incl. 5 epigenetic "clocks"), a BioAge composite from clinical laboratory parameters, brain age, skin age, subjective age, subjective life expectancy, and subjective health horizon. We found moderate associations within aging domains, both cross-sectionally and longitudinally over 7 years. However, associations across different domains were infrequent and modest. Notably, participants with older BioAge had correspondingly older epigenetic ages. Our results suggest that different aging clocks are only loosely interconnected and that more specific measures are needed to differentiate healthy from unhealthy aging.
Collapse
Grants
- #16SV5536K, #16SV5537, #16SV5538, #16SV5837, #01UW0808, #01GL1716A, and #01GL1716B German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF)
- Max Planck Institute for Human Development, Berlin, Germany
- 460683900 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- LI 2654/4-1 Heisenberg program of the German Research Foundation
Collapse
Affiliation(s)
- Johanna Drewelies
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Jan Homann
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Valentin Max Vetter
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Düzel
- Friede Springer Cardiovascular Prevention Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Laura Deecke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Philippe Jawinski
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Christina M Lill
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Ageing Epidemiology Unit, School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Ilja Demuth
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Denis Gerstorf
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
- German Institute for Economic Research, DIW Berlin, Berlin, Germany
| |
Collapse
|
3
|
Izadi M, Sadri N, Abdi A, Raeis Zadeh MM, Sadatipour S, Baghdadi G, Jalaei D, Tahmasebi S. Harnessing the fundamental roles of vitamins: the potent anti-oxidants in longevity. Biogerontology 2025; 26:58. [PMID: 39920477 DOI: 10.1007/s10522-025-10202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Aging is a complex and heterogeneous biological process characterized by telomere attrition, genomic instability, mitochondrial dysfunction, and disruption in nutrient sensing. Besides contributing to the progression of cancer, metabolic disorders, and neurodegenerative diseases, these manifestations of aging also adversely affect organ function. It is crucial to understand these mechanisms and identify interventions to modulate them to promote healthy aging and prevent age-related diseases. Vitamins have emerged as potential modulators of aging beyond their traditional roles in health maintenance. There is an increasing body of evidence that hormetic effects of vitamins are responsible for activating cellular stress responses, repair mechanisms, and homeostatic processes when mild stress is induced by certain vitamins. It is evident from this dual role that vitamins play a significant role in preventing frailty, promoting resilience, and mitigating age-related cellular damage. Moreover, addressing vitamin deficiencies in the elderly could have a significant impact on slowing aging and extending life expectancy. A review of recent advances in the role of vitamins in delaying aging processes and promoting multiorgan health is presented in this article. The purpose of this paper is to provide a comprehensive framework for using vitamins as strategic tools for fostering longevity and vitality. It offers a fresh perspective on vitamins' role in aging research by bridging biological mechanisms and clinical opportunities.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Sadatipour
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazalnaz Baghdadi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Phyo AZZ, Fransquet PD, Wrigglesworth J, Woods RL, Espinoza SE, Ryan J. Sex differences in biological aging and the association with clinical measures in older adults. GeroScience 2024; 46:1775-1788. [PMID: 37747619 PMCID: PMC10828143 DOI: 10.1007/s11357-023-00941-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Females live longer than males, and there are sex disparities in physical health and disease incidence. However, sex differences in biological aging have not been consistently reported and may differ depending on the measure used. This study aimed to determine the correlations between epigenetic age acceleration (AA), and other markers of biological aging, separately in males and females. We additionally explored the extent to which these AA measures differed according to socioeconomic characteristics, clinical markers, and diseases. Epigenetic clocks (HorvathAge, HannumAge, PhenoAge, GrimAge, GrimAge2, and DunedinPACE) were estimated in blood from 560 relatively healthy Australians aged ≥ 70 years (females, 50.7%) enrolled in the ASPREE study. A system-wide deficit accumulation frailty index (FI) composed of 67 health-related measures was generated. Brain age and subsequently brain-predicted age difference (brain-PAD) were estimated from neuroimaging. Females had significantly reduced AA than males, but higher FI, and there was no difference in brain-PAD. FI had the strongest correlation with DunedinPACE (range r: 0.21 to 0.24 in both sexes). Brain-PAD was not correlated with any biological aging measures. Significant correlations between AA and sociodemographic characteristics and health markers were more commonly found in females (e.g., for DunedinPACE and systolic blood pressure r = 0.2, p < 0.001) than in males. GrimAA and Grim2AA were significantly associated with obesity and depression in females, while in males, hypertension, diabetes, and chronic kidney disease were associated with these clocks, as well as DunedinPACE. Our findings highlight the importance of considering sex differences when investigating the link between biological age and clinical measures.
Collapse
Affiliation(s)
- Aung Zaw Zaw Phyo
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Peter D Fransquet
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
- School of Psychology, Deakin University, Burwood, Melbourne, VIC, 3125, Australia
| | - Jo Wrigglesworth
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
| | - Robyn L Woods
- ASPREE Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Sara E Espinoza
- Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joanne Ryan
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, 553, St. Kilda Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
5
|
Lozupone M, Solfrizzi V, Sardone R, Dibello V, Castellana F, Zupo R, Lampignano L, Bortone I, Daniele A, Panza F. The epigenetics of frailty. Epigenomics 2024; 16:189-202. [PMID: 38112012 DOI: 10.2217/epi-2023-0279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The conceptual change of frailty, from a physical to a biopsychosocial phenotype, expanded the field of frailty, including social and behavioral domains with critical interaction between different frailty models. Environmental exposures - including physical exercise, psychosocial factors and diet - may play a role in the frailty pathophysiology. Complex underlying mechanisms involve the progressive interactions of genetics with epigenetics and of multimorbidity with environmental factors. Here we review the literature on possible mechanisms explaining the association between epigenetic hallmarks (i.e., global DNA methylation, DNA methylation age acceleration and microRNAs) and frailty, considered as biomarkers of aging. Frailty could be considered the result of environmental epigenetic factors on biological aging, caused by conflicting DNA methylation age and chronological age.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine & Neuroscience 'DiBraiN', University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Vittorio Dibello
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
- Department of Orofacial Pain & Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fabio Castellana
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Zupo
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Ilaria Bortone
- Department of Translational Biomedicine & Neuroscience 'DiBraiN', University of Bari Aldo Moro, Bari, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Francesco Panza
- Cesare Frugoni Internal & Geriatric Medicine & Memory Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
DNA methylation age acceleration is associated with risk of diabetes complications. COMMUNICATIONS MEDICINE 2023; 3:21. [PMID: 36765171 PMCID: PMC9918553 DOI: 10.1038/s43856-023-00250-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Patients with Type 2 diabetes mellitus (T2D) are at risk for micro- and macrovascular complications. Implementable risk scores are needed to improve targeted prevention for patients that are particularly susceptible to complications. The epigenetic clock estimates an individual's biological age using DNA methylation profiles. METHODS In this study, we examined older adults of the Berlin Aging Study II that were reexamined on average 7.4 years after baseline assessment as part of the GendAge study. DNA methylation age (DNAmA) and its deviation from chronological age DNAmA acceleration (DNAmAA) were calculated with the 7-CpG clock (available at both timepoints, n = 1,071), Horvath's clock, Hannum's clock, PhenoAge and GrimAge (available at follow-up only, n = 1,067). T2D associated complications were assessed with the Diabetes Complications Severity Index (DCSI). RESULTS We report on a statistically significant association between oral glucose tolerance test results and Hannum and PhenoAge DNAmAA. PhenoAge was also associated with fasting glucose. In contrast, we found no cross-sectional association after covariate adjustment between DNAmAA and a diagnosis of T2D. However, longitudinal analyses showed that every additional year of 7-CpG DNAmAA at baseline increased the odds for developing one or more additional complications or worsening of an already existing complication during the follow-up period by 11% in male participants with T2D. This association persisted after covariate adjustment (OR = 1.11, p = 0.045, n = 56). CONCLUSION Although our results remain to be independently validated, this study shows promising evidence of utility of the 7-CpG clock in identifying patients with diabetes who are at high risk for developing complications.
Collapse
|
7
|
Peterson MD, Collins S, Meier HC, Brahmsteadt A, Faul JD. Grip strength is inversely associated with DNA methylation age acceleration. J Cachexia Sarcopenia Muscle 2023; 14:108-115. [PMID: 36353822 PMCID: PMC9891916 DOI: 10.1002/jcsm.13110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is a large body of evidence linking muscular weakness, as determined by low grip strength, to a host of negative ageing-related health outcomes. Given these links, grip strength has been labelled a 'biomarker of aging'; and yet, the pathways connecting grip strength to negative health consequences are unclear. The objective of this study was to determine whether grip strength was associated with measures of DNA methylation (DNAm) age acceleration. METHODS Middle age and older adults from the 2006 to 2008 waves of the Health and Retirement Study with 8-10 years of follow-up were included. Cross-sectional and longitudinal regression modelling was performed to examine the association between normalized grip strength (NGS) and three measures of DNAm age acceleration, adjusting for cell composition, sociodemographic variables and smoking. Longitudinal modelling was also completed to examine the association between change in absolute grip strength and DNAm age acceleration. The three DNAm clocks used for estimating age acceleration include the established DunedinPoAm, PhenoAge and GrimAge clocks. RESULTS There was a robust and independent cross-sectional association between NGS and DNAm age acceleration for men using the DunedinPoAm (β: -0.36; P < 0.001), PhenoAge (β: -8.27; P = 0.01) and GrimAge (β: -4.56; P = 0.01) clocks and for women using the DunedinPoAm (β: -0.36; P < 0.001) and GrimAge (β: -4.46; P = 0.01) clocks. There was also an independent longitudinal association between baseline NGS and DNAm age acceleration for men (β: -0.26; P < 0.001) and women (β: -0.36; P < 0.001) using the DunedinPoAm clock and for women only using the PhenoAge (β: -8.20; P < 0.001) and GrimAge (β: -5.91; P < 0.001) clocks. Longitudinal modelling revealed a robust association between change in grip strength from wave 1 to wave 3 was independently associated with PhenoAgeAA (β: -0.13; 95% CI: -0.23, -0.03) and GrimAgeAA (β: -0.07; 95% CI: -0.14, -0.01) in men only (both P < 0.05). CONCLUSIONS Our findings provide some initial evidence of age acceleration among men and women with lower NGS and loss of strength over time. Future research is needed to understand the extent to which DNAm age mediates the association between grip strength and chronic disease, disability and mortality.
Collapse
Affiliation(s)
- Mark D. Peterson
- Department of Physical Medicine and RehabilitationUniversity of MichiganAnn ArborMIUSA
- Michigan Institute for Health Policy and Innovation (IHPI)Ann ArborMIUSA
- Michigan Center on the Demography of Aging (MiCDA)Ann ArborMIUSA
| | - Stacey Collins
- Survey Research Center, Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| | - Helen C.S. Meier
- Michigan Center on the Demography of Aging (MiCDA)Ann ArborMIUSA
- Survey Research Center, Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| | - Alexander Brahmsteadt
- Department of Physical Medicine and RehabilitationUniversity of MichiganAnn ArborMIUSA
| | - Jessica D. Faul
- Michigan Center on the Demography of Aging (MiCDA)Ann ArborMIUSA
- Survey Research Center, Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
8
|
Bussa RM, Mora-Plazas M, Marín C, Villamor E. Vitamin D status and leukocyte telomere length in middle childhood. Eur J Clin Nutr 2023; 77:295-297. [PMID: 36347948 DOI: 10.1038/s41430-022-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Short telomere length is associated with chronic diseases and decreased lifespan. Vitamin D and its binding protein (DBP) may maintain telomeres through anti-inflammatory actions, yet the role of vitamin D on telomere length is uncertain, especially in children. We assessed the cross-sectional associations of plasma 25-hydroxy vitamin D (25(OH)D) and DBP with leukocyte telomere length (LTL) in a group of 447 children ages 5-12 years from the Bogotá School Children Cohort. We compared the distribution of age-standardized LTL (z-score) between 25(OH)D categories and between DBP quartiles overall and by sex. Overall, 25(OH)D was not significantly associated with LTL. Nonetheless, among boys, 25(OH)D < 50 nmol/L was related to an adjusted 0.36 shorter LTL z-score (95% CI: -0.71, -0.01; P = 0.046) compared with 25(OH)D ≥ 75 nmol/L. There was no association among girls. DBP was not significantly related to LTL. Intervention studies are warranted to determine whether increasing vitamin D status enhances telomere length.
Collapse
Affiliation(s)
- Rebecca M Bussa
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | | | - Constanza Marín
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Eduardo Villamor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Banszerus VL, König M, Landmesser U, Vetter VM, Demuth I. Epigenetic aging in patients diagnosed with coronary artery disease: results of the LipidCardio study. Clin Epigenetics 2023; 15:16. [PMID: 36721243 PMCID: PMC9887837 DOI: 10.1186/s13148-023-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION People age biologically at different rates. Epigenetic clock-derived DNA methylation age acceleration (DNAmAA) is among the most promising markers proposed to assess the interindividual differences in biological age. Further research is needed to evaluate the characteristics of the different epigenetic clock biomarkers available with respect to the health domains they reflect best. METHODS In this study, we have analyzed 779 participants of the LipidCardio study (mean chronological age 69.9 ± 11.0 years, 30.6% women) who underwent diagnostic angiography at the Charité University Hospital in Berlin, Germany. DNA methylation age (DNAm age) was measured by methylation-sensitive single nucleotide primer extension (MS-SNuPE) and calculated with the 7-CpG clock. We compared the biological age as assessed as DNAmAA of participants with an angiographically confirmed coronary artery disease (CAD, n = 554) with participants with lumen reduction of 50% or less (n = 90) and patients with a normal angiogram (n = 135). RESULTS Participants with a confirmed CAD had on average a 2.5-year higher DNAmAA than patients with a normal angiogram. This association did not persist after adjustment for sex in a logistic regression analysis. High-density lipoprotein, low-density lipoprotein, triglycerides, lipoprotein (a), estimated glomerular filtration rate, physical activity, BMI, alcohol consumption, and smoking were not associated with DNAmAA. CONCLUSION The association between higher DNAmAA and angiographically confirmed CAD seems to be mainly driven by sex.
Collapse
Affiliation(s)
- Verena Laura Banszerus
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
- Berlin Institute of Health (BIH), Deutsches Zentrum Für Herzkreislaufforschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
11
|
Gonçalves RSDSA, Maciel ÁCC, Rolland Y, Vellas B, de Souto Barreto P. Frailty biomarkers under the perspective of geroscience: A narrative review. Ageing Res Rev 2022; 81:101737. [PMID: 36162706 DOI: 10.1016/j.arr.2022.101737] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
Cellular and molecular aging biomarkers might contribute to identify at-risk individuals for frailty before overt clinical manifestations appear. Although studies on the associations of aging biomarkers and frailty exist, no investigation has gathered this information using a structured framework for identifying aging biomarkers; as a result, the evidence on frailty and aging biomarkers is diffuse and incomplete. Therefore, this narrative review aimed to gather information on the associations of the hallmarks of aging and frailty under the perspective of geroscience. The literature on human studies on this topic is sparse and mainly composed of cross-sectional investigations performed in small study samples. The main putative aging biomarkers associated to frailty were: mitochondrial DNA copy number (genomic instability and mitochondrial dysfunction), telomere length (telomere attrition), global DNA methylation (epigenetic alterations), Hsp70 and Hsp72 (loss of proteostasis), IGF-1 and SIRT1 (deregulated nutrient-sensing), GDF-15 (mitochondrial dysfunction, cellular senescence and altered intercellular communication), CD4 + and CD8 + cell percentages (cellular senescence), circulating osteogenic progenitor (COP) cells (stem cell exhaustion), and IL-6, CRP and TNF-alpha (altered intercellular communication). IGF-1, SIRT1, GDF-15, IL-6, CRP and TNF-alpha presented more evidence among these biomarkers, highlighting the importance of inflammation and nutrient sensing on frailty. Further longitudinal studies investigating biomarkers across the hallmarks of aging would provide valuable information on this topic.
Collapse
Affiliation(s)
| | | | - Yves Rolland
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
12
|
Strath LJ, Hernandez PV, Nodarse CL, Johnson AJ, Edberg JD, Fillingim RB, Cruz-Almeida Y. Clinical vitamin D levels are associated with insular volume and inferior temporal gyrus white matter surface area in community-dwelling individuals with knee pain. Front Neurosci 2022; 16:882322. [PMID: 36117614 PMCID: PMC9470941 DOI: 10.3389/fnins.2022.882322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Context Vitamin D is an essential, fat soluble micronutrient long-known for its effects on calcium homeostasis and bone health. With advances in technology, it is being discovered that Vitamin D exerts its effects beyond the musculoskeletal system. Vitamin D has since been noted in nervous system health and functioning, and is becoming a target of interest in brain health, aging, and chronic pain outcomes. Objectives We and others have previously shown that deficient Vitamin D status is associated with greater pain severity across a variety of conditions, however the reason as to why this relationship exists is still being understood. Here, we sought to examine associations between Vitamin D status and brain structure in those with chronic knee pain. Methods Structural MRI imaging techniques and whole brain analyses were employed and serum Vitamin D were collected on 140 participants with chronic pain. Covariates included age, sex, race and site, as these data were collected at two separate institutions. ANOVAs using the clinical cut points for Vitamin D status (deficient, insufficient, and optimal) as well as continuous regression-based Vitamin D effects were employed to observe differences in brain volume. P-value was set to 0.017 after correction for multiple comparisons. Results We discovered that individuals in our sample (age = 50+; 63.6% female; 52.1% Non-Hispanic Black) who were either clinically deficient (<20 ng/mL) or insufficient (20-30 ng/mL) in serum Vitamin D had significant differences in the gray matter of the left circular insular cortex, left inferior temporal gyrus, right middle temporal gyrus, as well as decreased white matter surface area in the right inferior temporal gyrus compared to those considered to have optimal levels (>30 ng/mL) of serum Vitamin D. Conclusion Evidence from these data suggests that Vitamin D, or lack thereof, may be associated with pain outcomes by mediating changes in regions of the brain known to process and interpret pain. More research understanding this phenomenon as well as the effects of Vitamin D supplementation is warranted.
Collapse
Affiliation(s)
- Larissa J. Strath
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States
| | - Pedro Valdes Hernandez
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States
| | - Chavier Laffitte Nodarse
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States
| | - Alisa J. Johnson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States
| | - Jeffrey D. Edberg
- School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, United States,*Correspondence: Yenisel Cruz-Almeida,
| |
Collapse
|
13
|
Reale A, Tagliatesta S, Zardo G, Zampieri M. Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mech Ageing Dev 2022; 206:111695. [PMID: 35760211 DOI: 10.1016/j.mad.2022.111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation (DNAm) overwrites information about multiple extrinsic factors on the genome. Age is one of these factors. Age causes characteristic DNAm changes that are thought to be not only major drivers of normal ageing but also precursors to diseases, cancer being one of these. Although there is still much to learn about the relationship between ageing, age-related diseases and DNAm, we now know how to interpret some of the effects caused by age in the form of changes in methylation marks at specific loci. In fact, these changes form the basis of the so called "epigenetic clocks", which translate the genomic methylation profile into an "epigenetic age". Epigenetic age does not only estimate chronological age but can also predict the risk of chronic diseases and mortality. Epigenetic age is believed to be one of the most accurate metrics of biological age. Initial evidence has recently been gathered pointing to the possibility that the rate of epigenetic ageing can be slowed down or even reversed. In this review, we discuss some of the most relevant advances in this field. Expected outcome is that this approach can provide insights into how to preserve health and reduce the impact of ageing diseases in humans.
Collapse
Affiliation(s)
- Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Stefano Tagliatesta
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00161 Rome, Italy.
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
14
|
Vetter VM, Sommerer Y, Kalies CH, Spira D, Bertram L, Demuth I. Vitamin D supplementation is associated with slower epigenetic aging. GeroScience 2022; 44:1847-1859. [PMID: 35562603 PMCID: PMC9213628 DOI: 10.1007/s11357-022-00581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Adverse effects of low vitamin D level on mortality and morbidity are controversially discussed. Especially older people are at risk for vitamin D deficiency and therefore exposed to its potentially harmful consequences. A way of measuring differences in the biological age is through DNA methylation age (DNAm age) and its deviation from chronological age, DNAm age acceleration (DNAmAA). We previously reported on an association between vitamin D deficiency and higher 7-CpG DNAmAA in participants of the Berlin Aging Study II (BASE-II). In this study, we employ a quasi-interventional study design to assess the relationship between DNAmAA of five epigenetic clocks and vitamin D supplementation. Longitudinal data were available for 1,036 participants of BASE-II that were reexamined on average 7.4 years later in the GendAge study (mean age at follow-up: 75.6 years, SD = 3.8 years, age range: 64.9-94.1 years, 51.9% female). DNAmAA was estimated with the 7-CpG clock, Horvath's clock, Hannum's clock, PhenoAge, and GrimAge. Methylation data were obtained through methylation-sensitive single nucleotide primer extension (MS-SNuPE) or Illumina's Infinium "MethylationEPIC" array. Vitamin D-deficient participants who chose to start vitamin D supplementation after baseline examination showed a 2.6-year lower 7-CpG DNAmAA (p = 0.011) and 1.3-year lower Horvath DNAmAA (p = 0.042) compared to untreated and vitamin D-deficient participants. DNAmAA did not statistically differ between participants with successfully treated vitamin D deficiency and healthy controls (p > 0.16). Therefore, we conclude that intake of vitamin D supplement is associated with lower DNAmAA in participants with vitamin D deficiency.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Christian Humberto Kalies
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik Spira
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Biology of Aging Group, Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
15
|
Vetter VM, Kalies CH, Sommerer Y, Bertram L, Demuth I. Seven-CpG DNA Methylation Age Determined by Single Nucleotide Primer Extension and Illumina's Infinium MethylationEPIC Array Provide Highly Comparable Results. Front Genet 2022; 12:759357. [PMID: 35111197 PMCID: PMC8802213 DOI: 10.3389/fgene.2021.759357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
DNA methylation age (DNAm age, epigenetic clock) is a novel and promising biomarker of aging. It is calculated from the methylation fraction of specific cytosine phosphate guanine sites (CpG sites) of genomic DNA. Several groups have proposed epigenetic clock algorithms and these differ mostly regarding the number and location of the CpG sites considered and the method used to assess the methylation status. Most epigenetic clocks are based on a large number of CpGs, e.g. as measured by DNAm microarrays. We have recently evaluated an epigenetic clock based on the methylation fraction of seven CpGs that were determined by methylation-sensitive single nucleotide primer extension (MS-SNuPE). This method is more cost-effective when compared to array-based technologies as only a few CpGs need to be examined. However, there is only little data on the correspondence in epigenetic age estimation using the 7-CpG clock and other algorithms. To bridge this gap, in this study we measured the 7-CpG DNAm age using two methods, via MS-SNuPE and via the MethylationEPIC array, in a sample of 1,058 participants of the Berlin Aging Study II (BASE-II), assessed as part of the GendAge study. On average, participants were 75.6 years old (SD: 3.7, age range: 64.9-90.0, 52.6% female). Agreement between methods was assessed by Bland-Altman plots. DNAm age was highly correlated between methods (Pearson's r = 0.9) and Bland-Altman plots showed a difference of 3.1 years. DNAm age by the 7-CpG formula was 71.2 years (SD: 6.9 years, SNuPE) and 68.1 years (SD: 6.4 years, EPIC array). The mean of difference in methylation fraction between methods for the seven individual CpG sites was between 0.7 and 13 percent. To allow direct conversion of DNAm age obtained from both methods we developed an adjustment formula with a randomly selected training set of 529 participants using linear regression. After conversion of the Illumina data in a second and independent validation set, the adjusted DNAm age was 71.44 years (SD: 6.1 years, n = 529). In summary, we found the results of DNAm clocks to be highly comparable. Furthermore, we developed an adjustment formula that allows for direct conversion of DNAm age estimates between methods and enables one singular clock to be used in studies that employ either the Illumina or the SNuPE method.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Humberto Kalies
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
16
|
Vetter VM, Kalies CH, Sommerer Y, Spira D, Drewelies J, Regitz-Zagrosek V, Bertram L, Gerstorf D, Demuth I. Relationship between five Epigenetic Clocks, Telomere Length and Functional Capacity assessed in Older Adults: Cross-sectional and Longitudinal Analyses. J Gerontol A Biol Sci Med Sci 2022; 77:1724-1733. [PMID: 35032170 DOI: 10.1093/gerona/glab381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation age acceleration (DNAmAA, derived from an epigenetic clock) and relative leukocyte telomere length (rLTL) are widely accepted biomarkers of aging. Nevertheless, it is still unclear which aspects of aging they represent best. Here we evaluated longitudinal associations between baseline rLTL and DNAmAA (estimated with 7-CpG clock) and functional assessments covering different domains of aging. Additionally, we made use of cross-sectional data on these assessments and examined their association with DNAmAA estimated by five different DNAm age measures. Two-wave longitudinal data was available for 1,083 participants of the Berlin Aging Study II (BASE-II) who were re-examined on average 7.4 years after baseline as part of the GendAge study. Functional outcomes were assessed with Fried's frailty score, Tinetti mobility test, falls in the past 12 months (yes/no), Finger-floor distance, Mini Mental State Examination (MMSE), Center for Epidemiologic Studies Depression Scale (CES-D), Activities of Daily Living (ADL), Instrumented ADL (IADL) and Mini Nutritional Assessment (MNA). Overall, we found no evidence for an association between the molecular biomarkers measured at baseline, rLTL and DNAmAA (7-CpG clock), and functional assessments assessed at follow-up. Similarly, a cross-sectional analyses of follow-up data did also not show evidence for associations of the various DNAmAA measures (7-CpG clock, Horvath's clock, Hannum's clock PhenoAge, and GrimAge) with functional assessments. In conclusion, neither rLTL nor 7-CpG DNAmAA were able to predict impairment in the analyzed assessments over a ~7-year time-course. Similarly, DNAmAA estimated from five epigenetic clocks was not a good cross-sectional marker of health deterioration either.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Humberto Kalies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Johanna Drewelies
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany.,Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Denis Gerstorf
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
17
|
Wijayabahu AT, Mickle AM, Mai V, Garvan C, Glover TL, Cook RL, Zhao J, Baum MK, Fillingim RB, Sibille KT. Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain. Nutrients 2022; 14:266. [PMID: 35057447 PMCID: PMC8779718 DOI: 10.3390/nu14020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Elevated inflammatory cytokines and chronic pain are associated with shorter leukocyte telomere length (LTL), a measure of cellular aging. Micronutrients, such as 25-hydroxyvitamin D (vitamin D) and omega 3, have anti-inflammatory properties. Little is known regarding the relationships between vitamin D, omega 6:3 ratio, LTL, inflammation, and chronic pain. We investigate associations between vitamin D, omega 6:3 ratio, LTL, and C-reactive protein (CRP) in people living with/without chronic pain overall and stratified by chronic pain status. A cross-sectional analysis of 402 individuals (63% women, 79.5% with chronic pain) was completed. Demographic and health information was collected. Chronic pain was assessed as pain experienced for at least three months. LTL was measured in genomic DNA isolated from blood leukocytes, and micronutrients and CRP were measured in serum samples. Data were analyzed with general linear regression. Although an association between the continuous micronutrients and LTL was not observed, a positive association between omega 6:3 ratio and CRP was detected. In individuals with chronic pain, based on clinical categories, significant associations between vitamin D, omega 6:3 ratio, and CRP were observed. Findings highlight the complex relationships between anti-inflammatory micronutrients, inflammation, cellular aging, and chronic pain.
Collapse
Affiliation(s)
- Akemi T. Wijayabahu
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Angela M. Mickle
- Department of Physical Medicine & Rehabilitation and Aging & Geriatric Research, University of Florida, Gainesville, FL 32610, USA;
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32610, USA;
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cynthia Garvan
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Toni L. Glover
- School of Nursing, Oakland University, Rochester, MI 48309, USA;
| | - Robert L. Cook
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA;
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32610, USA;
| | - Kimberly T. Sibille
- Department of Physical Medicine & Rehabilitation and Aging & Geriatric Research, University of Florida, Gainesville, FL 32610, USA;
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32610, USA;
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
18
|
Strath LJ, Meng L, Rani A, Sinha P, Johnson AJ, Huo Z, Foster TC, Edburg JD, Fillingim RB, Cruz-Almeida Y. Accelerated Epigenetic Aging Mediates the Association between Vitamin D Levels and Knee Pain in Community-Dwelling Individuals. J Nutr Health Aging 2022; 26:318-323. [PMID: 35450986 PMCID: PMC10161927 DOI: 10.1007/s12603-022-1758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To examine the relationship between Vitamin D status and pain intensity and disability in individuals with and without knee pain, and to examine the role of epigenetics in this relationship. DESIGN Cross-sectional analysis of data from the UPLOAD-2 study (Understanding Pain and Limitations in OsteoArthritic Disease-2). PARTICIPANTS 189 individuals aged 45-65 years and older. MEASUREMENTS Serum Vitamin D levels, pain related interference and characteristic pain intensity measures, and the epigenetic clock GrimAge derived from blood analyses. RESULTS Lower Vitamin D was associated with advanced epigenetic aging (AgeAccelGrim), greater pain and disability and that (AgeAccelGrim) mediated the relationship between Vitamin D status and self-reported pain (ab = -0.0799; CI [-0.1492, -0.0237]) and disability (ab = -0.0669; CI [-0.1365, -0.0149]) outcomes. CONCLUSION These data support the notion that lifestyle factors such as nutrition status play a key role in aging process, as well as the development and maintenance of age-related diseases such as pain. Modifying nutrition status could help promote healthy aging and reduce pain.
Collapse
Affiliation(s)
- L J Strath
- Yenisel Cruz-Almeida, 1329 SW 16th Street, Suite 5108, Gainesville, FL, 32605, USA, E:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
He L. Editorial: Epigenetic Clock: A Novel Tool for Nutrition Studies of Healthy Ageing. J Nutr Health Aging 2022; 26:316-317. [PMID: 35450985 DOI: 10.1007/s12603-022-1773-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L He
- Lingxiao He, School of Public Health, Xiamen University, Xiang'an South Road, 361104 Xiamen, China
| |
Collapse
|
20
|
Cardiovascular health is associated with the epigenetic clock in the Berlin Aging Study II (BASE-II). Mech Ageing Dev 2021; 201:111616. [PMID: 34879249 DOI: 10.1016/j.mad.2021.111616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
The epigenetic clock parameter DNAm age acceleration is a promising biomarker of aging. We have recently described an epigenetic clock based on only seven cytosine-phosphate-guanine sites, which is highly associated with chronological age. The aim of this study was to examine this epigenetic clock with respect to its relationship with cardiovascular health (CVH) in older adults. We used data from the Berlin Aging Study II (BASE-II; 1,671 participants; 68.8 ± 3.7 years old). CVH was operationalized using two different CVH scores, the Framingham Risk Score (FRS), and the Life's simple 7 (LS7). To adjust for potential confounding, e.g. by sex, we performed regression analyses. The LS7 score was higher, i.e. more favorable, in woman than in men (8.8 ± 2 vs. 8.2 ± 2, p < 0.001). DNAm age acceleration was associated with the FRS (β = 0.122, p = 0.028) and with the LS7 (β = -0.804, p = 0.032). In more detail, physical activity (β = -0.461, p = 0.05), HDL-cholesterol (β = 0.343, p = 0.03) and total cholesterol (β = -0.364, p = 0.002) were associated with epigenetic age acceleration. We present evidence suggesting that better CVH is associated with decelerated biological aging measured by the epigenetic clock.
Collapse
|
21
|
Hecker M, Bühring J, Fitzner B, Rommer PS, Zettl UK. Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules 2021; 11:1510. [PMID: 34680143 PMCID: PMC8533505 DOI: 10.3390/biom11101510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Jan Bühring
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Paulus Stefan Rommer
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| |
Collapse
|
22
|
Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell 2021; 20:e13452. [PMID: 34415665 PMCID: PMC8441394 DOI: 10.1111/acel.13452] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
23
|
Verschoor CP, Lin DTS, Kobor MS, Mian O, Ma J, Pare G, Ybazeta G. Epigenetic age is associated with baseline and 3-year change in frailty in the Canadian Longitudinal Study on Aging. Clin Epigenetics 2021; 13:163. [PMID: 34425884 PMCID: PMC8381580 DOI: 10.1186/s13148-021-01150-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The trajectory of frailty in older adults is important to public health; therefore, markers that may help predict this and other important outcomes could be beneficial. Epigenetic clocks have been developed and are associated with various health-related outcomes and sociodemographic factors, but associations with frailty are poorly described. Further, it is uncertain whether newer generations of epigenetic clocks, trained on variables other than chronological age, would be more strongly associated with frailty than earlier developed clocks. Using data from the Canadian Longitudinal Study on Aging (CLSA), we tested the hypothesis that clocks trained on phenotypic markers of health or mortality (i.e., Dunedin PoAm, GrimAge, PhenoAge and Zhang in Nat Commun 8:14617, 2017) would best predict changes in a 76-item frailty index (FI) over a 3-year interval, as compared to clocks trained on chronological age (i.e., Hannum in Mol Cell 49:359-367, 2013, Horvath in Genome Biol 14:R115, 2013, Lin in Aging 8:394-401, 2016, and Yang Genome Biol 17:205, 2016). RESULTS We show that in 1446 participants, phenotype/mortality-trained clocks outperformed age-trained clocks with regard to the association with baseline frailty (mean = 0.141, SD = 0.075), the greatest of which is GrimAge, where a 1-SD increase in ΔGrimAge (i.e., the difference from chronological age) was associated with a 0.020 increase in frailty (95% CI 0.016, 0.024), or ~ 27% relative to the SD in frailty. Only GrimAge and Hannum (Mol Cell 49:359-367, 2013) were significantly associated with change in frailty over time, where a 1-SD increase in ΔGrimAge and ΔHannum 2013 was associated with a 0.0030 (95% CI 0.0007, 0.0050) and 0.0028 (95% CI 0.0007, 0.0050) increase over 3 years, respectively, or ~ 7% relative to the SD in frailty change. CONCLUSION Both prevalence and change in frailty are associated with increased epigenetic age. However, not all clocks are equally sensitive to these outcomes and depend on their underlying relationship with chronological age, healthspan and lifespan. Certain clocks were significantly associated with relatively short-term changes in frailty, thereby supporting their utility in initiatives and interventions to promote healthy aging.
Collapse
Affiliation(s)
- Chris P Verschoor
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada.
- Northern Ontario School of Medicine, Sudbury, ON, Canada.
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.
| | - David T S Lin
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Oxana Mian
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada
| | - Jinhui Ma
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Guillaume Pare
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Gustavo Ybazeta
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada
| |
Collapse
|
24
|
Demuth I, Banszerus V, Drewelies J, Düzel S, Seeland U, Spira D, Tse E, Braun J, Steinhagen-Thiessen E, Bertram L, Thiel A, Lindenberger U, Regitz-Zagrosek V, Gerstorf D. Cohort profile: follow-up of a Berlin Aging Study II (BASE-II) subsample as part of the GendAge study. BMJ Open 2021; 11:e045576. [PMID: 34162642 PMCID: PMC8230995 DOI: 10.1136/bmjopen-2020-045576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The study 'Sex- and gender-sensitive prevention of cardiovascular and metabolic disease in older adults in Germany', the GendAge study, focuses on major risk factors for cardiovascular and metabolic diseases and on the development of major outcomes from intermediate phenotypes in the context of sex and gender differences. It is based on a follow-up examination of a subsample (older group) of the Berlin Aging Study II (BASE-II). PARTICIPANTS The GendAge study assessments took place between 22 June 2018 and 10 March 2020. A total of 1100 participants (older BASE-II subsample, aged ≥65 years) with baseline data assessed at least by one of the BASE-II partner sites were investigated in the follow-up. These participants had a mean age of 75.6 years (SD ±3.8), with a mean follow-up at 7.4 years (SD ±1.5). FINDINGS TO DATE Data from different domains such as internal medicine, geriatrics, immunology and psychology were collected, with a focus on cardiometabolic diseases and in the context of sex and gender differences. Diabetes mellitus type 2 was reported by 15.6% and 8.6% of men and women, respectively. In contrast, this disease was diagnosed in 20.7% of men and 13.3% of women, indicating that a substantial proportion of almost 30% was unaware of the disease. Echocardiography revealed that left ventricular ejection fraction was higher in women than in men, in agreement with previous reports. FUTURE PLANS A gender questionnaire assessing sociocultural aspects implemented as part of the follow-up described here will allow to calculate a gender score and its evaluation based on the newly collected data. At the same time, the other BASE-II research foci established over the past 10 years will be continued and strengthened by the BASE-II transition into a longitudinal study with follow-up data on the older subsample. TRIAL REGISTRATION NUMBER DRKS00016157.
Collapse
Affiliation(s)
- Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Verena Banszerus
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johanna Drewelies
- Department of Psychology, Humboldt University of Berlin, Berlin, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max-Planck-Institute for Human Development, Berlin, Germany
| | - Ute Seeland
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Social Medicine, Epidemiology and Health Economics, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Dominik Spira
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Esther Tse
- Berlin Institute for Gender in Medicine, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Julian Braun
- Si-M / "Der Simulierte Mensch" a science framework of Technische, Universitat Berlin andCharité - Universitatsmedizin Berlin, Berlin, Germany
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitatsmedizin Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Andreas Thiel
- Si-M / "Der Simulierte Mensch" a science framework of Technische, Universitat Berlin andCharité - Universitatsmedizin Berlin, Berlin, Germany
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitatsmedizin Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max-Planck-Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Vera Regitz-Zagrosek
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute for Gender in Medicine, Charite Universitatsmedizin Berlin, Berlin, Germany
- Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Denis Gerstorf
- Department of Psychology, Humboldt University of Berlin, Berlin, Berlin, Germany
| |
Collapse
|
25
|
D'Amelio P. Vitamin D Deficiency and Risk of Metabolic Syndrome in Aging Men. World J Mens Health 2021; 39:291-301. [PMID: 33663024 PMCID: PMC7994656 DOI: 10.5534/wjmh.200189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The elderly population is rapidly increasing; hence, the disability due to age-related diseases has become an important socioeconomic burden. Amongst age-related diseases cardiovascular ones (CVD) have a huge impact on morbidity and mortality and are associated with metabolic syndrome (MetS). Several studies investigated the role of hypovitaminosis D in the pathogenesis of MetS and of CVD, this review unravels the relationship between aging/senescence, vitamin D, gender, and pathogenesis of MetS.
Collapse
Affiliation(s)
- Patrizia D'Amelio
- Department of Internal Medicine, Service of Geriatric Medicine and Geriatric Rehabilitation, University of Lausanne Hospital Centre, Lausanne, Switzerland.
| |
Collapse
|
26
|
García-Giménez JL, Mena-Molla S, Tarazona-Santabalbina FJ, Viña J, Gomez-Cabrera MC, Pallardó FV. Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1883. [PMID: 33672064 PMCID: PMC7919465 DOI: 10.3390/ijerph18041883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.
Collapse
Affiliation(s)
- José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | | | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
27
|
Allsopp R. Take a Ride on the Telomere-Aging Train. J Gerontol A Biol Sci Med Sci 2021; 76:1-2. [PMID: 33355657 DOI: 10.1093/gerona/glaa245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard Allsopp
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu
| |
Collapse
|
28
|
El Assar M, Angulo J, Carnicero JA, Walter S, García-García FJ, Rodríguez-Artalejo F, Rodríguez-Mañas L. Association between telomere length, frailty and death in older adults. GeroScience 2020; 43:1015-1027. [PMID: 33190211 PMCID: PMC8110679 DOI: 10.1007/s11357-020-00291-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Frailty is considered a clinical marker of functional ageing. Telomere length (TL) has been proposed as a biomarker of biological age but its role in human ageing is controversial. The main aim of the study was to evaluate the longitudinal association of TL with incident frailty and mortality in two cohorts of Spanish community-dwelling older adults. TL was determined at baseline in blood samples from older adults included in Toledo Study for Healthy Aging and ENRICA cohorts while frailty was determined by frailty phenotype (FP) at baseline and at follow-up (3.5 years). Deaths occurring during follow-up were also recorded. Associations of TL with frailty and mortality were analysed by logistic regression with progressive adjustment. Data were separately analysed in the two cohorts and in all subjects by performing a meta-analysis. TL was not different between frail and non-frail subjects. Longer telomeres were not associated with lower risk of prevalent frailty. Similarly, TL at baseline failed to predict incident frailty (OR: 1.04 [0.88-1.23]) or even the development of a new FP criterion (OR: 0.97 [0.90-1.05]) at follow-up. Lack of association was also observed when analysing the development of specific FP criteria. Finally, while frailty at baseline was significantly associated with higher risk of death at follow-up (OR: 4.08 [1.97-8.43], p < 0.001), TL did not significantly change the mortality risk (OR: 1.05 [0.94-1.16]). Results show that TL does not predict incident frailty or mortality in older adults. This suggests that TL is not a reliable biomarker of functional age.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José A Carnicero
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Stefan Walter
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | | | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/IdiPaz, CIBERESP, and IMDEA Food Institute, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
- Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
- Division of Geriatric Medicine, Hospital Universitario de Getafe, Ctra de Toledo km 12,500, 28905, Getafe, Spain.
| |
Collapse
|
29
|
Kara M, Ekiz T, Ricci V, Kara Ö, Chang KV, Özçakar L. 'Scientific Strabismus' or two related pandemics: coronavirus disease and vitamin D deficiency. Br J Nutr 2020; 124:736-741. [PMID: 32393401 PMCID: PMC7300194 DOI: 10.1017/s0007114520001749] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
The WHO has announced the novel coronavirus disease (COVID-19) outbreak to be a global pandemic. The distribution of community outbreaks shows seasonal patterns along certain latitude, temperature and humidity, that is, similar to the behaviour of seasonal viral respiratory tract infections. COVID-19 displays significant spread in northern mid-latitude countries with an average temperature of 5–11°C and low humidity. Vitamin D deficiency has also been described as pandemic, especially in Europe. Regardless of age, ethnicity and latitude, recent data showed that 40 % of Europeans are vitamin D deficient (25-hydroxyvitamin D (25(OH)D) levels <50 nmol/l), and 13 % are severely deficient (25(OH)D < 30 nmol/l). A quadratic relationship was found between the prevalences of vitamin D deficiency in most commonly affected countries by COVID-19 and the latitudes. Vitamin D deficiency is more common in the subtropical and mid-latitude countries than the tropical and high-latitude countries. The most commonly affected countries with severe vitamin D deficiency are from the subtropical (Saudi Arabia 46 %; Qatar 46 %; Iran 33·4 %; Chile 26·4 %) and mid-latitude (France 27·3 %; Portugal 21·2 %; Austria 19·3 %) regions. Severe vitamin D deficiency was found to be nearly 0 % in some high-latitude countries (e.g. Norway, Finland, Sweden, Denmark and Netherlands). Accordingly, we would like to call attention to the possible association between severe vitamin D deficiency and mortality pertaining to COVID-19. Given its rare side effects and relatively wide safety, prophylactic vitamin D supplementation and/or food fortification might reasonably serve as a very convenient adjuvant therapy for these two worldwide public health problems alike.
Collapse
Affiliation(s)
- Murat Kara
- Department of Physical Medicine and Rehabilitation, Hacettepe University Medical School, Ankara, Turkey
| | - Timur Ekiz
- Department of Physical Medicine and Rehabilitation, Türkmenbaşı Medical Center, Adana, Turkey
| | - Vincenzo Ricci
- Department of Biomedical and Neuromotor Science, Physical and Rehabilitation Medicine Unit, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Özgür Kara
- Geriatrics Unit, Yenimahalle Training and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Levent Özçakar
- Department of Physical Medicine and Rehabilitation, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
30
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|